cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A132046 Triangle read by rows: T(n,0) = T(n,n) = 1, and T(n,k) = 2*binomial(n,k) for 1 <= k <= n - 1.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 8, 12, 8, 1, 1, 10, 20, 20, 10, 1, 1, 12, 30, 40, 30, 12, 1, 1, 14, 42, 70, 70, 42, 14, 1, 1, 16, 56, 112, 140, 112, 56, 16, 1, 1, 18, 72, 168, 252, 252, 168, 72, 18, 1, 1, 20, 90, 240, 420, 504, 420, 240, 90, 20, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 08 2007

Keywords

Comments

T(2*n,n) is A100320 (with Hankel transform A144704). - Paul Barry, Sep 19 2008
Double the internal elements of Pascal's triangle. - Paul Barry, Jan 07 2009
Coefficients of 2*(x + 1)^n - (x^n + 1) as a triangle (except for the very first term). - Thomas Baruchel, Jun 02 2018

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  1,  4,  1;
  1,  6,  6,  1;
  1,  8, 12,  8,  1;
  1, 10, 20, 20, 10,  1;
  1, 12, 30, 40, 30, 12,  1;
  1, 14, 42, 70, 70, 42, 14, 1;
  ...
		

Crossrefs

Row sums: A095121.
Cf. A154327 (diagonal sums). [Paul Barry, Jan 07 2009]
Cf. A141540.

Programs

  • Mathematica
    T[n_, k_] := If[n == k || k == 0, 1, If[k <= n, 2 Binomial[n, k], 0]]
    Flatten[Table[T[n, k], {n, 0, 20}, {k, 0, n}]] (* Emanuele Munarini, May 15 2018 *)
  • Maxima
    T(n, k) := if k = 0 or k = n then 1 else 2*binomial(n, k)$
    create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 03 2019 */

Formula

T(n,k) = 2*A007318(n,k) - A103451(n,k).
T(n,k) = [k<=n] (0^(n + k) + C(n,k)*(2 - 0^(n - k) - 0^k)). - Paul Barry, Sep 19 2008
T(n,k) = A007318(n,k)*A154325(n,k). - Paul Barry, Jan 07 2009
From Emanuele Munarini, May 15 2018: (Start)
G.f.: (1 - t - x*t + 3*x*t^2 - x*t^3 - x^2*t^3)/((1 - t)*(1 - x*t)*(1 - t - x*t)).
T(n+3,k+2) = 2*T(n+2,k+2) - T(n+1,k+2) + 2*T(n+2,k+1) - 3*T(n+1,k+1) - T(n+1,k) + T(n,k+1) + T(n,k), except for n = 0 and k = 0. (End)
E.g.f.: 1 - exp(t) - exp(t*x) + 2*exp(t*(1 + x)). - Franck Maminirina Ramaharo, Jan 02 2019
Showing 1-1 of 1 results.