A154327
Diagonal sums of number triangle A132046.
Original entry on oeis.org
1, 1, 2, 5, 8, 15, 24, 41, 66, 109, 176, 287, 464, 753, 1218, 1973, 3192, 5167, 8360, 13529, 21890, 35421, 57312, 92735, 150048, 242785, 392834, 635621, 1028456, 1664079, 2692536, 4356617, 7049154, 11405773, 18454928, 29860703, 48315632, 78176337, 126491970, 204668309, 331160280, 535828591, 866988872
Offset: 0
-
[0^n-(3+(-1)^n)/2+2*Fibonacci(n+1):n in [0..40]]; // Vincenzo Librandi, Sep 12 2016
-
Join[{1}, LinearRecurrence[{1, 2, -1, -1}, {1, 2, 5, 8}, 25]] (* G. C. Greubel, Sep 11 2016 *)
CoefficientList[Series[(1 - x^2 + 2 x^3 + x^4) / ((1 - x^2) (1 - x - x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 12 2016 *)
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 8, 12, 8, 1, 1, 10, 20, 20, 10, 1, 1, 12, 30, 40, 30, 12, 1, 1, 14, 42, 70, 70, 42, 14, 1, 1, 16, 56, 112, 140, 112, 56, 16, 1, 1, 18, 72, 168, 252, 252, 168, 72, 18, 1, 1, 20, 90, 240, 420, 504, 420, 240, 90, 20, 1
Offset: 1
A095121
Expansion of (1-x+2x^2)/((1-x)*(1-2x)).
Original entry on oeis.org
1, 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
-
[-2+4*2^(n-1)+(Binomial(2*n,n) mod 2): n in [0..40]]; // Vincenzo Librandi, Aug 14 2015
-
ZL := [S, {S=Prod(B,B), B=Set(Z, 1 <= card)}, labeled]: seq(combstruct[ count](ZL, size=n), n=1..31); # Zerinvary Lajos, Mar 13 2007
for k from 1 to 31 do 2*(2^k-1); od;
-
Join[{1}, LinearRecurrence[{3, -2}, {2, 6}, 50]] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *)
Join[{1},NestList[2#+2&,2,40]] (* Harvey P. Dale, Dec 25 2013 *)
-
Vec((1-x+2*x^2)/((1-x)*(1-2*x)) + O(x^40)) \\ Michel Marcus, Aug 14 2015
-
vector(100, n, n--; if(n==0, 1, 2*2^n-2)) \\ Altug Alkan, Nov 26 2015
A100320
A Catalan transform of (1 + 2*x)/(1 - 2*x).
Original entry on oeis.org
1, 4, 12, 40, 140, 504, 1848, 6864, 25740, 97240, 369512, 1410864, 5408312, 20801200, 80233200, 310235040, 1202160780, 4667212440, 18150270600, 70690527600, 275693057640, 1076515748880, 4208197927440, 16466861455200, 64495207366200, 252821212875504, 991837065896208
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
-
a100320 n = a124927 (2 * n) n -- Reinhard Zumkeller, Mar 04 2012
-
[4*Binomial(2*n-1, n) - 3*0^n: n in [0..40]]; // G. C. Greubel, Feb 01 2023
-
a[0]= 1; a[n_]:= 2 Binomial[2 n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 31 2018 *)
-
def A100320(n): return 4*binomial(2*n-1, n) - 3*0^n
[A100320(n) for n in range(41)] # G. C. Greubel, Feb 01 2023
A168641
Triangle read by rows: T(n,k) = [x^k] p(x,n), where p(x,n) = 3*(x + 1)^n - 2*(x^n + 1) - n*(x + x^(n - 1)) for n >= 2, p(x,0) = 1, and p(x,1) = x + 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 8, 18, 8, 1, 1, 10, 30, 30, 10, 1, 1, 12, 45, 60, 45, 12, 1, 1, 14, 63, 105, 105, 63, 14, 1, 1, 16, 84, 168, 210, 168, 84, 16, 1, 1, 18, 108, 252, 378, 378, 252, 108, 18, 1, 1, 20, 135, 360, 630, 756, 630, 360, 135, 20, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 8, 18, 8, 1;
1, 10, 30, 30, 10, 1;
1, 12, 45, 60, 45, 12, 1;
1, 14, 63, 105, 105, 63, 14, 1;
1, 16, 84, 168, 210, 168, 84, 16, 1;
1, 18, 108, 252, 378, 378, 252, 108, 18, 1;
1, 20, 135, 360, 630, 756, 630, 360, 135, 20, 1;
...
-
function f(n,k)
if n le 2 then return 1;
elif k eq 0 or k eq n then return 1;
elif k eq 1 or k eq n-1 then return 2;
else return 3;
end if;
end function;
A168641:= func< n,k | Binomial(n,k)*f(n,k) >;
[A168641(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 24 2025
-
p[x_, n_]:= If[n==0, 1, If[n==1, 1+x, 3*(1+x)^n -(1+x^n) -(1+n*x +n*x^(n-1) + x^n)]];
Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 10}]]
(* Second program *)
f[n_, k_]:= With[{b=Boole}, If[k<=n/2, b[k==0] +2*b[k==1] +3*b[2<=k<=n/2], f[n, n-k]]];
A168641[n_, k_]:= Binomial[n,k]*If[n<3,1,f[n,k]];
Table[A168641[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2025 *)
-
T(n,k) := ratcoef(if n <= 2 then (1 + x)^n else 3*(x + 1)^n - (x^n + 1) - (x^n + n*x^(n - 1) + n*x + 1), x, k);
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Jan 02 2019 */
-
def f(n,k):
if (k<=n/2): return int(k==0) + 2*int(k==1) + 3*int(1A168641(n,k):
if (n<3): return binomial(n,k)
else: return binomial(n,k)*f(n,k)
print(flatten([[A168641(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 24 2025
A168643
Triangle read by rows: T(n,k) = [x^k] p(x,n) where p(x,0) = 1, p(x,n) = (6 - n)*(1+x)^n - (5-n)*(1 + x^n) for 1 <= n <= 4, and p (x,n) = 4*(1+x)^n - Sum_{i=0..2} (Sum_{j=0..i} binomial(n, j)*(x^j + x^(n-j))) for n >= 5.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 9, 9, 1, 1, 8, 12, 8, 1, 1, 10, 30, 30, 10, 1, 1, 12, 45, 80, 45, 12, 1, 1, 14, 63, 140, 140, 63, 14, 1, 1, 16, 84, 224, 280, 224, 84, 16, 1, 1, 18, 108, 336, 504, 504, 336, 108, 18, 1, 1, 20, 135, 480, 840, 1008, 840, 480, 135, 20, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 8, 1;
1, 9, 9, 1;
1, 8, 12, 8, 1;
1, 10, 30, 30, 10, 1;
1, 12, 45, 80, 45, 12, 1;
1, 14, 63, 140, 140, 63, 14, 1;
1, 16, 84, 224, 280, 224, 84, 16, 1;
1, 18, 108, 336, 504, 504, 336, 108, 18, 1;
1, 20, 135, 480, 840, 1008, 840, 480, 135, 20, 1;
...
-
(* First program *)
p[x_, n_]:= If[n==0, 1, If[n==1, x+1, 4*(1+x)^n - (1+x^n) - If[n>2, x^n + n*x^(n-1) +n*x+1, 1+x^n] - If[n>3, x^n +n*x^(n-1) + Binomial[n,2]*(x^2 +x^(n-2)) +n*x+1, 1+x^n]]];
Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 10}]]
(* Second program *)
f[n_,k_]:= With[{B=Boole}, If[n==0, 1, If[0n-3]]]];
A168643[n_,k_]:= Binomial[n,k]*f[n,k];
Table[A168643[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2025 *)
-
T(n,k) := if k = 0 or k = n then 1 else (if n <= 4 then (6 - n)*binomial(n, k) else ratcoef(4*(x + 1)^n - sum(sum(binomial(n, j)*(x^j + x^(n - j)), j, 1, i), i, 1, 2), x, k))$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Jan 02 2019 */
-
def f(n,k):
if n==0: return 1
elif 0n-3)
def A168643(n,k): return binomial(n,k)*f(n,k)
print(flatten([[A168643(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 08 2025
A168644
Triangle read by rows: T(n, k) = [x^k] p(x,n), where p(x,0) = 1, p(x,n) = (7 - n)*(1+x)^n - (6-n)*(1 + x^n) for 1 <= n <= 5, and p(x,n) = 5*(1 + x)^n - Sum_{i=0..3} (Sum_{j=0..i} binomial(n, j)*(x^j + x^(n-j))) + (1/6)*n*(n - 1)*(n - 5)*x^(n-3) for n >= 6.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 12, 12, 1, 1, 12, 18, 12, 1, 1, 10, 20, 20, 10, 1, 1, 12, 45, 65, 45, 12, 1, 1, 14, 63, 140, 154, 63, 14, 1, 1, 16, 84, 224, 350, 252, 84, 16, 1, 1, 18, 108, 336, 630, 630, 384, 108, 18, 1, 1, 20, 135, 480, 1050, 1260, 1050, 555, 135, 20, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 10, 1;
1, 12, 12, 1;
1, 12, 18, 12, 1;
1, 10, 20, 20, 10, 1;
1, 12, 45, 65, 45, 12, 1;
1, 14, 63, 140, 154, 63, 14, 1;
1, 16, 84, 224, 350, 252, 84, 16, 1;
1, 18, 108, 336, 630, 630, 384, 108, 18, 1;
1, 20, 135, 480, 1050, 1260, 1050, 555, 135, 20, 1;
...
-
(* First program *)
p[x_, n_]:= If[n<2, (1+x)^n, 5*(1+x)^n -(1+x^n) - If[n>2, x^n +n*x^(n-1) + n*x +1, 1+x^n] - If[n>3, x^n +n*x^(n-1) +Binomial[n,2]*(x^2 +x^(n-2)) + n*x +1, 1+x^n] - If[n>4, x^n +n*x^(n-1) +Binomial[n,2]*(x^2 +x^(n-3) +x^(n-2)) + Binomial[n,3]*x^3 +n*x +1, 1+x^n]];
Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 10}]]
(* Second program *)
f[n_, k_]:= With[{B=Boole}, If[k==0 || k==n, 1, If[1<=n<=5, (7-n) - (6-n)*(B[k==0] + B[k==n]), If[n==6, (k+1)*B[k<4] + (n-k+1)*B[k>3] - B[k==3], (k + 1)*B[k<4] + 5*B[3n-4]]]]];
A168644[n_, k_]:= Binomial[n,k]*f[n,k] + If[n>5, n*(n-1)*(n-5)*Boole[k==n-3]/6, 0];
Table[A168644[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2025 *)
-
T(n, k) := if k = 0 or k = n then 1 else (if n <= 5 then (7 - n)*binomial(n, k) else ratcoef(5*(x + 1)^n - sum(sum(binomial(n, j)*(x^j + x^(n - j)), j, 1, i), i, 1, 3) + (1/6)*n*(n - 1)*(n - 5)*x^(n - 3), x, k))$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Jan 02 2019 */
-
def f(n, k):
if k==0 or k==n: return 1
elif 03) - int(k==3)
else: return (k+1)*int(k<4) + 5*int(3n-4)
def A168644(n, k):
if n<6: return binomial(n, k)*f(n, k)
else: return binomial(n,k)*f(n,k) + n*(n-1)*(n-5)*int(k==n-3)//6
print(flatten([[A168644(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 06 2025
A168646
Triangle read by rows: T(n,k) = [x^k] p(x,n), where p(x,0) = 1, p(x,n) = (8 - n)*(1+x)^n - (7 - n)*(1 + x^n) for 1 <= n <= 6, and p(x,n) = 6*(1+x)^n - Sum_{i=0..4} (Sum_{j=0..i} binomial(n, j)*(x^j + x^(n-j))) for n >= 7.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 15, 15, 1, 1, 16, 24, 16, 1, 1, 15, 30, 30, 15, 1, 1, 12, 30, 40, 30, 12, 1, 1, 14, 63, 315, 315, 63, 14, 1, 1, 16, 84, 224, 700, 224, 84, 16, 1, 1, 18, 108, 336, 630, 630, 336, 108, 18, 1, 1, 20, 135, 480, 1050, 1512, 1050, 480, 135, 20, 1, 1, 22, 165, 660, 1650, 2772, 2772, 1650, 660, 165, 22, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 12, 1;
1, 15, 15, 1;
1, 16, 24, 16, 1;
1, 15, 30, 30, 15, 1;
1, 12, 30, 40, 30, 12, 1;
1, 14, 63, 315, 315, 63, 14, 1;
1, 16, 84, 224, 700, 224, 84, 16, 1;
1, 18, 108, 336, 630, 630, 336, 108, 18, 1;
1, 20, 135, 480, 1050, 1512, 1050, 480, 135, 20, 1;
...
-
(* First program *)
p[n_, x_]:= With[{B=Binomial}, If[n==0, 1, If[1<=n<=6, 1 + (8-n)*Sum[B[n,j]*x^j, {j, n -1}] +x^n, Sum[(j+1)*B[n,j]*x^j, {j,0,4}] +6*Sum[B[n,j]*x^j, {j,5,n-5}] + Sum[(n-j+ 1)*B[n,j]*x^j, {j,n-4,n}]]]];
Flatten[Table[CoefficientList[p[n,x], x], {n, 0, 12}]]
(* Second program *)
f[n_, k_]:= If[k==0||k==n,1,If[1<=n<= 6 && 1<=k<=n-1, 8-n, (k+1)*Boole[k<=4] + 6*Boole[5<=k<=n-5] +(n-k+1)*Boole[n-4<=k<=n]]];
A168646[n_, k_]:= Binomial[n,k]*f[n,k];
Table[A168646[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2025 *)
-
T(n,k) := if k = 0 or k = n then 1 else (if n <= 6 then (8 - n)*binomial(n, k) else ratcoef(6*(x + 1)^n - sum(sum(binomial(n, j)*(x^j + x^(n - j)), j, 1, i), i, 1, 4), x, k))$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Jan 02 2019 */
-
def f(n,k):
if k==0 or k==n: return 1
elif 0n-5)
def A168646(n,k): return binomial(n,k)*f(n,k)
print(flatten([[A168646(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 05 2025
Data values T(7,3), T(7,4), T(8,4) corrected by
G. C. Greubel, Apr 05 2025
A132737
Triangle T(n,k) = 2*binomial(n,k) + 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 7, 7, 1, 1, 9, 13, 9, 1, 1, 11, 21, 21, 11, 1, 1, 13, 31, 41, 31, 13, 1, 1, 15, 43, 71, 71, 43, 15, 1, 1, 17, 57, 113, 141, 113, 57, 17, 1, 1, 19, 73, 169, 253, 253, 169, 73, 19, 1, 1, 21, 91, 241, 421, 505, 421, 241, 91, 21, 1, 1, 23, 111, 331, 661, 925, 925, 661, 331, 111, 23, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
1, 5, 1;
1, 7, 7, 1;
1, 9, 13, 9, 1;
1, 11, 21, 21, 11, 1;
1, 13, 31, 41, 31, 13, 1;
1, 15, 43, 71, 71, 43, 15, 1;
...
-
A132737:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n,k) +1 >;
[A132737(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 15 2021
-
T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n,k] +1];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 15 2021 *)
-
def A132737(n,k): return 1 if (k==0 or k==n) else 2*binomial(n,k) + 1
flatten([[A132737(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Feb 15 2021
Showing 1-9 of 9 results.
Comments