cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A168643 Triangle read by rows: T(n,k) = [x^k] p(x,n) where p(x,0) = 1, p(x,n) = (6 - n)*(1+x)^n - (5-n)*(1 + x^n) for 1 <= n <= 4, and p (x,n) = 4*(1+x)^n - Sum_{i=0..2} (Sum_{j=0..i} binomial(n, j)*(x^j + x^(n-j))) for n >= 5.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 9, 9, 1, 1, 8, 12, 8, 1, 1, 10, 30, 30, 10, 1, 1, 12, 45, 80, 45, 12, 1, 1, 14, 63, 140, 140, 63, 14, 1, 1, 16, 84, 224, 280, 224, 84, 16, 1, 1, 18, 108, 336, 504, 504, 336, 108, 18, 1, 1, 20, 135, 480, 840, 1008, 840, 480, 135, 20, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  8,   1;
  1,  9,   9,   1;
  1,  8,  12,   8,   1;
  1, 10,  30,  30,  10,    1;
  1, 12,  45,  80,  45,   12,   1;
  1, 14,  63, 140, 140,   63,  14,   1;
  1, 16,  84, 224, 280,  224,  84,  16,   1;
  1, 18, 108, 336, 504,  504, 336, 108,  18,  1;
  1, 20, 135, 480, 840, 1008, 840, 480, 135, 20, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    (* First program *)
    p[x_, n_]:= If[n==0, 1, If[n==1, x+1, 4*(1+x)^n - (1+x^n) - If[n>2, x^n + n*x^(n-1) +n*x+1, 1+x^n] - If[n>3, x^n +n*x^(n-1) + Binomial[n,2]*(x^2 +x^(n-2)) +n*x+1, 1+x^n]]];
    Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 10}]]
    (* Second program *)
    f[n_,k_]:= With[{B=Boole}, If[n==0, 1, If[0n-3]]]];
    A168643[n_,k_]:= Binomial[n,k]*f[n,k];
    Table[A168643[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2025 *)
  • Maxima
    T(n,k) := if k = 0 or k = n then 1 else (if n <= 4 then (6 - n)*binomial(n, k) else ratcoef(4*(x + 1)^n - sum(sum(binomial(n, j)*(x^j + x^(n - j)), j, 1, i), i, 1, 2), x, k))$
    create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Jan 02 2019 */
    
  • SageMath
    def f(n,k):
        if n==0: return 1
        elif 0n-3)
    def A168643(n,k): return binomial(n,k)*f(n,k)
    print(flatten([[A168643(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 08 2025

Formula

From G. C. Greubel, Apr 08 2025: (Start)
T(n, k) = [k=0] + (6-n)*binomial(n,k)*[1 <= k <= n-1] + [k=n] if 1 <= n <= 4, T(n, k) = binomial(n,k)*( (k+1)*[k<3] + 4*[2 < k < n-2] + (n-k+1)*[k > n-3] ) if n >= 5, with T(n, 0) = T(n, n) = 1.
T(n, n-k) = T(n, k) (symmetric rows).
Sum_{k=0..n} T(n, k) = 2^(n+2) - n^2 - 3*n - 6 + 13*[n=3] + 10*[n=2] + 4*[n=1] + 3*[n=0]. (End)

Extensions

Edited by Franck Maminirina Ramaharo, Jan 02 2019

A168644 Triangle read by rows: T(n, k) = [x^k] p(x,n), where p(x,0) = 1, p(x,n) = (7 - n)*(1+x)^n - (6-n)*(1 + x^n) for 1 <= n <= 5, and p(x,n) = 5*(1 + x)^n - Sum_{i=0..3} (Sum_{j=0..i} binomial(n, j)*(x^j + x^(n-j))) + (1/6)*n*(n - 1)*(n - 5)*x^(n-3) for n >= 6.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 12, 12, 1, 1, 12, 18, 12, 1, 1, 10, 20, 20, 10, 1, 1, 12, 45, 65, 45, 12, 1, 1, 14, 63, 140, 154, 63, 14, 1, 1, 16, 84, 224, 350, 252, 84, 16, 1, 1, 18, 108, 336, 630, 630, 384, 108, 18, 1, 1, 20, 135, 480, 1050, 1260, 1050, 555, 135, 20, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1, 10,   1;
  1, 12,  12,   1;
  1, 12,  18,  12,    1;
  1, 10,  20,  20,   10,    1;
  1, 12,  45,  65,   45,   12,    1;
  1, 14,  63, 140,  154,   63,   14,   1;
  1, 16,  84, 224,  350,  252,   84,  16,   1;
  1, 18, 108, 336,  630,  630,  384, 108,  18,  1;
  1, 20, 135, 480, 1050, 1260, 1050, 555, 135, 20, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    (* First program *)
    p[x_, n_]:= If[n<2, (1+x)^n, 5*(1+x)^n -(1+x^n) - If[n>2, x^n +n*x^(n-1) + n*x +1, 1+x^n] - If[n>3, x^n +n*x^(n-1) +Binomial[n,2]*(x^2 +x^(n-2)) + n*x +1, 1+x^n] - If[n>4, x^n +n*x^(n-1) +Binomial[n,2]*(x^2 +x^(n-3) +x^(n-2)) + Binomial[n,3]*x^3 +n*x +1, 1+x^n]];
    Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 10}]]
    (* Second program *)
    f[n_, k_]:= With[{B=Boole}, If[k==0 || k==n, 1, If[1<=n<=5, (7-n) - (6-n)*(B[k==0] + B[k==n]), If[n==6, (k+1)*B[k<4] + (n-k+1)*B[k>3] - B[k==3], (k + 1)*B[k<4] + 5*B[3n-4]]]]];
    A168644[n_, k_]:= Binomial[n,k]*f[n,k] + If[n>5, n*(n-1)*(n-5)*Boole[k==n-3]/6, 0];
    Table[A168644[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2025 *)
  • Maxima
    T(n, k) := if k = 0 or k = n then 1 else (if n <= 5 then (7 - n)*binomial(n, k) else ratcoef(5*(x + 1)^n - sum(sum(binomial(n, j)*(x^j + x^(n - j)), j, 1, i), i, 1, 3) + (1/6)*n*(n - 1)*(n - 5)*x^(n - 3), x, k))$
    create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Jan 02 2019 */
    
  • SageMath
    def f(n, k):
        if k==0 or k==n: return 1
        elif 03) - int(k==3)
        else: return (k+1)*int(k<4) + 5*int(3n-4)
    def A168644(n, k):
        if n<6: return binomial(n, k)*f(n, k)
        else: return binomial(n,k)*f(n,k) + n*(n-1)*(n-5)*int(k==n-3)//6
    print(flatten([[A168644(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 06 2025

Extensions

Edited by Franck Maminirina Ramaharo, Jan 02 2019

A168646 Triangle read by rows: T(n,k) = [x^k] p(x,n), where p(x,0) = 1, p(x,n) = (8 - n)*(1+x)^n - (7 - n)*(1 + x^n) for 1 <= n <= 6, and p(x,n) = 6*(1+x)^n - Sum_{i=0..4} (Sum_{j=0..i} binomial(n, j)*(x^j + x^(n-j))) for n >= 7.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 15, 15, 1, 1, 16, 24, 16, 1, 1, 15, 30, 30, 15, 1, 1, 12, 30, 40, 30, 12, 1, 1, 14, 63, 315, 315, 63, 14, 1, 1, 16, 84, 224, 700, 224, 84, 16, 1, 1, 18, 108, 336, 630, 630, 336, 108, 18, 1, 1, 20, 135, 480, 1050, 1512, 1050, 480, 135, 20, 1, 1, 22, 165, 660, 1650, 2772, 2772, 1650, 660, 165, 22, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1, 12,   1;
  1, 15,  15,   1;
  1, 16,  24,  16,    1;
  1, 15,  30,  30,   15,    1;
  1, 12,  30,  40,   30,   12,    1;
  1, 14,  63, 315,  315,   63,   14,   1;
  1, 16,  84, 224,  700,  224,   84,  16,   1;
  1, 18, 108, 336,  630,  630,  336, 108,  18,  1;
  1, 20, 135, 480, 1050, 1512, 1050, 480, 135, 20, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    (* First program *)
    p[n_, x_]:= With[{B=Binomial}, If[n==0, 1, If[1<=n<=6, 1 + (8-n)*Sum[B[n,j]*x^j, {j, n -1}] +x^n, Sum[(j+1)*B[n,j]*x^j, {j,0,4}] +6*Sum[B[n,j]*x^j, {j,5,n-5}] + Sum[(n-j+ 1)*B[n,j]*x^j, {j,n-4,n}]]]];
    Flatten[Table[CoefficientList[p[n,x], x], {n, 0, 12}]]
    (* Second program *)
    f[n_, k_]:= If[k==0||k==n,1,If[1<=n<= 6 && 1<=k<=n-1, 8-n, (k+1)*Boole[k<=4] + 6*Boole[5<=k<=n-5] +(n-k+1)*Boole[n-4<=k<=n]]];
    A168646[n_, k_]:= Binomial[n,k]*f[n,k];
    Table[A168646[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2025 *)
  • Maxima
    T(n,k) := if k = 0 or k = n then 1 else (if n <= 6 then (8 - n)*binomial(n, k) else ratcoef(6*(x + 1)^n - sum(sum(binomial(n, j)*(x^j + x^(n - j)), j, 1, i), i, 1, 4), x, k))$
    create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Jan 02 2019 */
    
  • SageMath
    def f(n,k):
        if k==0 or k==n: return 1
        elif 0n-5)
    def A168646(n,k): return binomial(n,k)*f(n,k)
    print(flatten([[A168646(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 05 2025

Formula

T(n, n-k) = T(n, k). - G. C. Greubel, Apr 05 2025

Extensions

Edited by Franck Maminirina Ramaharo, Jan 02 2019
Data values T(7,3), T(7,4), T(8,4) corrected by G. C. Greubel, Apr 05 2025

A168437 a(n) = 3 + 10*floor(n/2).

Original entry on oeis.org

3, 13, 13, 23, 23, 33, 33, 43, 43, 53, 53, 63, 63, 73, 73, 83, 83, 93, 93, 103, 103, 113, 113, 123, 123, 133, 133, 143, 143, 153, 153, 163, 163, 173, 173, 183, 183, 193, 193, 203, 203, 213, 213, 223, 223, 233, 233, 243, 243, 253, 253, 263, 263, 273, 273, 283
Offset: 1

Views

Author

Vincenzo Librandi, Nov 25 2009

Keywords

Crossrefs

Bisections of A168437 are A017305 and (A017305 MINUS {3}). - Rick L. Shepherd, Jun 17 2010

Programs

  • Magma
    [3+10*Floor(n/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
  • Mathematica
    Table[3 + 10 Floor[n/2], {n, 70}] (* or *) CoefficientList[Series[(3 + 10 x - 3 x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)
    LinearRecurrence[{1,1,-1},{3,13,13},70] (* Harvey P. Dale, May 26 2021 *)
  • PARI
    a(n)=n\2*10+3 \\ Charles R Greathouse IV, Jan 11 2012
    

Formula

a(n) = 10*n - a(n-1) - 4, with n>1, a(1) = 3.
a(n) = 10*floor(n/2) + 3 = A168641(n) + 3. - Rick L. Shepherd, Jun 17 2010
G.f.: x*(3 + 10*x - 3*x^2)/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 19 2013
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 19 2013
a(n) = (1 + 5*(-1)^n + 10*n)/2. - Bruno Berselli, Sep 19 2013
E.g.f.: (1/2)*(5 - 6*exp(x) + (10*x + 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 22 2016

Extensions

Edited by Rick L. Shepherd, Jun 17 2010
Definition rewritten, using Shepherd's formula, by Vincenzo Librandi, Sep 19 2013
Showing 1-4 of 4 results.