A154347 a(n) = ( (7 + 2*sqrt(2))^n - (7 - 2*sqrt(2))^n )/(4*sqrt(2)).
1, 14, 155, 1596, 15989, 158410, 1562191, 15375864, 151212265, 1486561286, 14612155139, 143621159220, 1411597868381, 13873902629314, 136359124206775, 1340197731092976, 13172044142823889, 129460511024722430
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (14,-41).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-2); S:=[ ((7+2*r)^n-(7-2*r)^n)/(4*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009 -
Maple
A154347:=n->((7+2*sqrt(2))^n-(7-2*sqrt(2))^n)/(4*sqrt(2)): seq(simplify(A154347(n)), n=1..30); # Wesley Ivan Hurt, Sep 13 2016
-
Mathematica
LinearRecurrence[{14,-41},{1,14}, 25] (* or *) Table[( (7 + 2*sqrt(2))^n - (7 - 2*sqrt(2))^n )/(4*sqrt(2)),{n,1,25}] (* G. C. Greubel, Sep 13 2016 *)
Formula
a(n) = 14*a(n-1) - 41*a(n-2) for n>1, with a(0)=0, a(1)=1. - Philippe Deléham, Jan 12 2009
G.f.: x/(1 - 14*x + 41*x^2). - Klaus Brockhaus, Jan 12 2009, corrected Oct 08 2009
E.g.f.: (1/4*sqrt(2))*exp(7*x)*sinh(2*sqrt(2)*x). - G. C. Greubel, Sep 13 2016
Extensions
Extended beyond a(7) by Klaus Brockhaus, Jan 12 2009
Edited by Klaus Brockhaus, Oct 08 2009
Comments