cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154514 a(n) = 648*n^2 - 72*n + 1.

Original entry on oeis.org

577, 2449, 5617, 10081, 15841, 22897, 31249, 40897, 51841, 64081, 77617, 92449, 108577, 126001, 144721, 164737, 186049, 208657, 232561, 257761, 284257, 312049, 341137, 371521, 403201, 436177, 470449, 506017, 542881, 581041, 620497, 661249
Offset: 1

Views

Author

Vincenzo Librandi, Jan 11 2009

Keywords

Comments

The identity (648*n^2 - 72*n + 1)^2 - (9*n^2 - n)*(216*n - 12)^2 = 1 can be written as a(n)^2 - A154516(n)*A154518(n)^2 = 1. This is the case s=3 of the identity (8*n^2*s^4 - 8*n*s^2 + 1)^2 - (n^2*s^2 - n)*(8*n*s^3 - 4*s)^2 = 1. - Vincenzo Librandi, Jan 30 2012

Crossrefs

Programs

  • Magma
    I:=[577, 2449, 5617]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 30 2012
  • Mathematica
    Table[648n^2-72n+1,{n,50}] (* Harvey P. Dale, Apr 22 2011 *)
  • PARI
    a(n)=648*n^2-72*n+1 \\ Charles R Greathouse IV, Dec 27 2011
    

Formula

G.f.: x*(-577 - 718*x - x^2)/(x-1)^3. - Harvey P. Dale, Apr 22 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 30 2012

A154518 a(n) = 216*n - 12.

Original entry on oeis.org

204, 420, 636, 852, 1068, 1284, 1500, 1716, 1932, 2148, 2364, 2580, 2796, 3012, 3228, 3444, 3660, 3876, 4092, 4308, 4524, 4740, 4956, 5172, 5388, 5604, 5820, 6036, 6252, 6468, 6684, 6900, 7116, 7332, 7548, 7764, 7980, 8196, 8412, 8628
Offset: 1

Views

Author

Vincenzo Librandi, Jan 11 2009

Keywords

Comments

The identity (648*n^2 - 72*n + 1)^2 - (9*n^2 - n)*(216*n - 12)^2 = 1 can be written as A154514(n)^2 - A154516(n)*a(n)^2 = 1 (see also the second comment at A154514). - Vincenzo Librandi, Jan 30 2012

Crossrefs

Programs

Formula

From R. J. Mathar, Jul 29 2009: (Start)
a(n) = 12*(18n-1).
O.g.f.: 12*x*(17+x)/(x-1)^2. (End)
a(n) = 2*a(n-1) - a(n-2).

A334116 a(n) is the least number k greater than n such that the square roots of both k and n have continuous fractions with the same period p and, if p > 1, the same periodic terms except for the last term.

Original entry on oeis.org

1, 5, 8, 4, 10, 12, 32, 15, 9, 17, 40, 20, 74, 33, 24, 16, 26, 39, 1880, 30, 112, 660, 96, 35, 25, 37, 104, 299, 338, 42, 77600, 75, 60, 78, 48, 36, 50, 84, 68, 87, 130, 56, 288968, 468, 350, 3242817, 192, 63, 49, 65, 200, 2726, 1042, 1628, 180, 72, 308, 425, 5880, 95
Offset: 1

Views

Author

Gerhard Kirchner, Apr 14 2020

Keywords

Comments

Note that a(n)=n if n is a square. The square root of a squarefree integer n has a continued fraction of the form [e(0);[e(1),...,e(p)]] with e(p)=2e(0) and e(i)=e(p-i) for 0 < i < p, see reference. The symmetric part [e(1),...,e(p-1)] of the continued fraction [m;[e(1),...,e(p-1), 2m]] will be called the pattern of n. 2 has the empty pattern (sqrt(2)=[1,[2]]), 3 has the pattern [1] (sqrt(3)=[1,[1,2]]) and so on. In this sense, the description of the sequence can be simplified as "Least number greater than n with the same pattern".
It can be can proved (see link) that integers with the same pattern are terms of a quadratic sequence.
An ambiguity has to be fixed: sqrt(2)=[1,[2]] = [1,[2,2]] = [1,[2,2,2]] and so on. We define that the shortest pattern is correct, here it is empty. Comment on the third subsequence (2),6,12,... below: The second term 6 has the pattern [2], but the first term 2 in brackets has the "wrong" pattern, after fixing the ambiguity.

Examples

			1) p=1: f(1)=2, f(2)=a(2)=5, f(3)=a(5)=10, f(4)=a(10)=17,..
sqrt(2)=[1,[2]], sqrt(5)=[2,[4]], sqrt(10)=[3,[6]], sqrt(17)=[4,[8]],..
2) p=2: f(1)=3, f(2)=a(3)=8, f(3)=a(8)=15, f(4)=a(15)=24,..
sqrt(3)=[1,[1,2]], sqrt(8)=[2,[1,4]], sqrt(15)=[3,[1,6]], sqrt(24)=[4,[1,8]],..
3) p=3: f(1)=41, f(2)=a(41)=130, f(3)=a(130)=269,..
sqrt(41)=[6,[2,2,12]], sqrt(130)=[11,[2,2,121]], sqrt(269)=[16,[2,2,256]],..
4) p=4: f(1)=33, f(2)=a(33)=60, f(3)=a(60)=95,..
sqrt(33)=[5,[1,2,1,10]], sqrt(60)=[7,[1,2,1,49]], sqrt(95)=[9,[1,2,1,81]],..
Several subsequences f(k) with f(k+1)=a(f(k)).
k>1 if first term in brackets, k>0 otherwise.
First terms  Period  Formula           Example
1) 2,5,10,17   1  A002522(k)=k^2+1           1
2) 3,8,15,24   2  A005563(k)=(k+1)^2-1       2
3)(2),6,12     2  A002378(k)=k*(k+1)
4) 7,32,75     4  A013656(k)=k*(9*k-2)
5) 11,40,87    2  A147296(k)=k*(9*k+2)
6) 13,74,185   5  A154357(k)=25*k^2-14*k+2
7) (3),14,33   4  A033991(k)=k*(4*k-1)       4
8) (5),18,39   2  A007742(k)=k*(4*k+1)
9) 21,112,275  6  A157265(k)=36*k^2-17*k+2
10)23,96,219   4  A154376(k)=25*k^2-2*k
11)27,104,231  2  A154377(k)=25*k^2+2*k
12)28,299,858  4  A156711(k)=144*k^2-161*k+45
13)29,338,985  5  A156640(k)=169*k^2+140*k+29
14)(8),34,78   4  A154516(k)=9*k^2-k
15)(10),38,84  2  A154517(k)=9*k^2+k
16)(2),41,130  3  A154355(k)=25*k^2-36*k+13  3
17)47,192,435  4  A157362(k)=49*k^2-2*k
		

References

  • Kenneth H. Rosen, Elementary number theory and its applications, Addison-Wesley, 3rd ed. 1993, page 428.

Crossrefs

Programs

  • Maxima
    block([nmax: 100],
    /*saves the first nmax terms in the current directory*/
    algebraic: true, local(coeff), showtime: true,
    fl: openw(sconcat("terms",nmax, ".txt")),
    coeff(w,m):=
      block(a: m, p: 0, s: w, vv:[],
       while a<2*m do
        (p: p+1, s: ratsimp(1/(s-floor(s))), a: floor(s),
         if a<2*m then vv: append(vv, [a])),
       j: floor((p-1)/2),
       if mod(p,2)=0 then v: [1,0,vv[j+1]] else v: [0,1,1],
       for i from j thru 1 step(-1) do
        (h: vv[i], u: [v[1]+h*v[3], v[3], 2*h*v[1]+v[2]+h^2*v[3]], v: u),
       return(v)),
       for n from 1 thru nmax do
        (w: sqrt(n), m: floor(w),
         if w=m then  b: n else
          (v: coeff(w,m),  x: v[1], y: v[2], z: v[3], q: mod(z,2),
           if q=0 then (z: z/2, y: y/2) else x: 2*x,
           fr: (x*m+y)/z, m: m+z, fr: fr+x, b: m^2+fr),
          printf( fl, "~d, ", b)),
          close(fl));
    
  • Python
    from sympy import floor, S, sqrt
    def coeff(w,m):
        a, p, s, vv = m, 0, w, []
        while a < 2*m:
            p += 1
            s = S.One/(s-floor(s))
            a = floor(s)
            if a < 2*m:
                vv.append(a)
        j = (p-1)//2
        v = [0,1,1] if p % 2 else [1, 0, vv[j]]
        for i in range(j-1,-1,-1):
            h = vv[i]
            v = [v[0]+h*v[2], v[2], 2*h*v[0]+v[1]+h**2*v[2]]
        return v
    def A334116(n):
        w = sqrt(n)
        m = floor(w)
        if w == m:
            return n
        else:
            x, y, z = coeff(w,m)
            if z % 2:
                x *= 2
            else:
                z //= 2
                y //= 2
            return (m+z)**2+x+(x*m+y)//z # Chai Wah Wu, Sep 30 2021, after Maxima code
Showing 1-3 of 3 results.