A154516 a(n) = 9n^2 - n.
8, 34, 78, 140, 220, 318, 434, 568, 720, 890, 1078, 1284, 1508, 1750, 2010, 2288, 2584, 2898, 3230, 3580, 3948, 4334, 4738, 5160, 5600, 6058, 6534, 7028, 7540, 8070, 8618, 9184, 9768, 10370, 10990, 11628, 12284, 12958, 13650, 14360
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[8, 34, 78]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 30 2012
-
Mathematica
LinearRecurrence[{3, -3, 1}, {8, 34, 78}, 50] (* Vincenzo Librandi, Jan 30 2012 *)
-
PARI
a(n)=9*n^2-n \\ Charles R Greathouse IV, Dec 27 2011
-
Sage
[lucas_number1(3,3*n,n) for n in range(0, 41)] # Zerinvary Lajos, Nov 20 2009
Formula
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jan 30 2012
G.f.: x*(-8-10*x)/(x-1)^3. - Vincenzo Librandi, Jan 30 2012
Comments