cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154591 a(n) = 2*n^2 + 18*n + 7.

Original entry on oeis.org

27, 51, 79, 111, 147, 187, 231, 279, 331, 387, 447, 511, 579, 651, 727, 807, 891, 979, 1071, 1167, 1267, 1371, 1479, 1591, 1707, 1827, 1951, 2079, 2211, 2347, 2487, 2631, 2779, 2931, 3087, 3247, 3411, 3579, 3751, 3927, 4107, 4291, 4479, 4671, 4867, 5067, 5271
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Ninth diagonal of A144562.
2*a(n) + 67 is a square.

Crossrefs

Programs

  • Magma
    I:=[27, 51, 79]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 22 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {27, 51, 79}, 50] (* Vincenzo Librandi, Feb 22 2012 *)
  • PARI
    for(n=1, 40, print1(2*n^2 + 18*n + 7", ")); \\ Vincenzo Librandi, Feb 22 2012
    
  • SageMath
    [2*n^2+18*n+7 for n in range(1,51)] #  G. C. Greubel, May 27 2024

Formula

G.f.: (9*x^2-6*x-7)/(x-1)^3. - Bruno Berselli, Dec 07 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 22 2012
Sum_{n>=1} 1/a(n) = 1621/20097 + tan(sqrt(67)*Pi/2)*Pi/(2*sqrt(67)). - Amiram Eldar, Feb 25 2023
E.g.f.: (7 + 20*x + 2*x^2)*exp(x). - G. C. Greubel, May 27 2024