A154597 a(n) = 15*a(n-1) + a(n-2) with a(0) = 0, a(1) = 1.
0, 1, 15, 226, 3405, 51301, 772920, 11645101, 175449435, 2643386626, 39826248825, 600037119001, 9040383033840, 136205782626601, 2052127122432855, 30918112619119426, 465823816409224245, 7018275358757483101, 105739954197771470760, 1593117588325329544501
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..840 (a(0) = 0 added by Jianing Song)
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive sequences. [From _Johannes W. Meijer_, Jun 12 2010]
- Index entries for linear recurrences with constant coefficients, signature (15,1).
Crossrefs
First bisection is A098247.
Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), A000129 (k=2), A006190 (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), this sequence (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), A243399 (k=19), A041181 (k=20).
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-229); S:=[ ((15+r)^n-(15-r)^n)/(2^n*r): n in [1..17] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009 -
Magma
[n le 2 select n-1 else 15*Self(n-1) +Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 20 2024
-
Mathematica
LinearRecurrence[{15,1}, {0,1}, 31] (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *) CoefficientList[Series[x/(1-15*x-x^2), {x,0,50}], x] (* G. C. Greubel, Apr 16 2017 *)
-
PARI
my(x='x+O('x^50)); concat([0], Vec(x/(1-15*x-x^2))) \\ G. C. Greubel, Apr 16 2017
-
SageMath
def A154597(n): return (-i)^(n-1)*chebyshev_U(n-1, 15*i/2) [A154597(n) for n in range(31)] # G. C. Greubel, Sep 20 2024
Formula
G.f.: x/(1 - 15*x - x^2). - Klaus Brockhaus, Jan 12 2009, corrected Oct 07 2009
a(n) = ((15 + sqrt(229))^n - (15 - sqrt(229))^n)/(2^n*sqrt(229)).
From Johannes W. Meijer, Jun 12 2010: (Start)
Limit_{k -> infinity} a(n+k)/a(k) = (A090301(n) + a(n)*sqrt(229))/2.
Limit_{n -> infinity} A090301(n)/a(n) = sqrt(229).
a(2n+1) = 15*A098245(n-1).
E.g.f.: (2/sqrt(229))*exp(15*x/2)*sinh(sqrt(229)*x/2). - G. C. Greubel, Sep 20 2024
Extensions
Extended beyond a(7) by Klaus Brockhaus and Philippe Deléham, Jan 12 2009
Name from Philippe Deléham, Jan 12 2009
Edited by Klaus Brockhaus, Oct 07 2009
Missing a(0) added by Jianing Song, Jan 29 2019
Comments