cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154599 a(n) = 2*n^2 + 20*n + 8.

Original entry on oeis.org

30, 56, 86, 120, 158, 200, 246, 296, 350, 408, 470, 536, 606, 680, 758, 840, 926, 1016, 1110, 1208, 1310, 1416, 1526, 1640, 1758, 1880, 2006, 2136, 2270, 2408, 2550, 2696, 2846, 3000, 3158, 3320, 3486, 3656, 3830, 4008, 4190, 4376, 4566, 4760, 4958, 5160
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Tenth diagonal of A144562.
2*a(n) + 84 is a square.

Crossrefs

Programs

  • Magma
    I:=[30, 56, 86]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 26 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {30, 56, 86}, 50] (* Vincenzo Librandi, Feb 26 2012 *)
    Table[2n^2+20n+8,{n,50}] (* Harvey P. Dale, Jun 15 2019 *)
  • PARI
    for(n=1, 40, print1(2*n^2+20*n+8", ")); \\ Vincenzo Librandi, Feb 26 2012
    
  • SageMath
    [2*n^2+20*n+8 for n in range(1,41)] # G. C. Greubel, May 30 2024

Formula

From R. J. Mathar, Jan 05 2011: (Start)
a(n) = 2*A127147(n+13).
G.f.: 2*x*(5-4*x)*(3-x)/(1-x)^3. (End)
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=1} 1/a(n) = 79/952 - cot(sqrt(21)*Pi)*Pi/(4*sqrt(21)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2851/14280 - cosec(sqrt(21)*Pi)*Pi/(4*sqrt(21)). (End)
E.g.f.: 2*(-4 + (4 + 11*x + x^2)*exp(x)). - G. C. Greubel, May 30 2024