A154603 Binomial transform of reduced tangent numbers (A002105).
1, 1, 2, 4, 11, 31, 110, 400, 1757, 7861, 41402, 220540, 1358183, 8405203, 59340710, 418689544, 3335855897, 26440317193, 234747589106, 2065458479476, 20224631361251, 195625329965671, 2094552876276830, 22092621409440256
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
Programs
-
Magma
A002105:= func< n | (-1)^(n+1)*2^n*(4^n - 1)*Bernoulli(2*n)/n >; b:= func< n | (n mod 2) eq 0 select A002105(Floor(n/2)+1) else 0 >; A154603:= func< n | (&+[Binomial(n,k)*b(k): k in [0..n]]) >; [A154603(n): n in [0..30]]; // G. C. Greubel, Sep 20 2024
-
Mathematica
With[{nn=30},CoefficientList[Series[Exp[x]Sec[x/Sqrt[2]]^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 30 2013 *)
-
SageMath
def A002105(n): return (-1)^(n+1)*2^n*(4^n -1)*bernoulli(2*n)/n def b(n): return A002105(n//2 +1) if n%2==0 else 0 def A154603(n): return sum(binomial(n,k)*b(k) for k in range(n+1)) [A154603(n) for n in range(31)] # G. C. Greubel, Sep 20 2024
Formula
G.f: 1/(1-x-x^2/(1-x-3x^2/(1-x-6x^2/(1-x-10x^2/(1-x-15x^2..... (continued fraction);
E.g.f.: exp(x)*(sec(x/sqrt(2))^2);
G.f.: 1/(x*Q(0)), where Q(k)= 1/x - 1 - (k+1)*(k+2)/2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 26 2013
G.f.: 1/Q(0), where Q(k)= 1 - x - 1/2*x^2*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 04 2013
a(n) ~ n! * 2^(2+n/2)*n*(exp(sqrt(2)*Pi)+(-1)^n) / (Pi^(n+2)*exp(Pi/sqrt(2))). - Vaclav Kotesovec, Oct 02 2013
G.f.: T(0)/(1-x), where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 14 2013
a(n) = Sum_{k=0..n} binomial(n,k)*b(k), where b(n) = A002105((n+2)/2) if n mod 2 = 0 otherwise b(n) = 0. - G. C. Greubel, Sep 20 2024
Extensions
Typo in e.g.f. fixed by Vaclav Kotesovec, Oct 02 2013
Comments