cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A154604 Hankel transform of reduced tangent numbers.

Original entry on oeis.org

1, 1, 3, 54, 9720, 26244000, 1488034800000, 2362404048480000000, 135019896025206528000000000, 347259290825980971841536000000000000, 49121618545275670528799969525760000000000000000
Offset: 0

Views

Author

Paul Barry, Jan 12 2009

Keywords

Comments

Hankel transform of A002105 (with interpolated zeros).
Hankel transform of A154603.

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (&*[(Binomial(k+1,2))^(n-k+1): k in [1..n]]): n in [0..15]]; // G. C. Greubel, May 30 2024
    
  • Mathematica
    Table[Product[(k*(k+1)/2)^(n - k + 1), {k, 1, n}], {n, 0, 12}] (* Vaclav Kotesovec, Nov 13 2022 *)
  • PARI
    a(n) = prod(k=1, n, binomial(k+1,2)^(n-k+1)); \\ Michel Marcus, Nov 13 2022
    
  • SageMath
    [product((binomial(k+1,2))^(n-k+1) for k in range(1,n+1)) for n in range(16)] # G. C. Greubel, May 30 2024

Formula

a(n) = Product_{k=1..n} C(k+1,2)^(n-k+1).
a(n) ~ n^(n^2 + 3*n + 7/3) * Pi^(n + 3/2) / (A^2 * 2^((n^2 - n - 3)/2) * exp(3*n^2/2 + 3*n - 1/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 13 2022
Showing 1-1 of 1 results.