cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A186364 Number of cycle-up-down permutations of {1,2,...,n} having no fixed points. A permutation is said to be cycle-up-down if it is a product of up-down cycles. A cycle (b(1), b(2), ...) is said to be up-down if, when written with its smallest element in the first position, it satisfies b(1)b(3)<... .

Original entry on oeis.org

1, 0, 1, 1, 5, 15, 71, 341, 1945, 12135, 84091, 635281, 5212085, 46091955, 437198711, 4426839821, 47657861425, 543551916975, 6546911178931, 83039587809961, 1106307936885965, 15445529882517195, 225502102290364751, 3436240674908121701, 54555087491802061705
Offset: 0

Views

Author

Emeric Deutsch, Feb 28 2011

Keywords

Comments

a(n) = A186363(n,0).
Hankel transform is A154604. Binomial transform is A000111(n+1). - Paul Barry, Apr 11 2011

Examples

			a(4) = 5 because we have (12)(34),(13)(24),(1324),(1423), and (14)(23).
		

Crossrefs

Cf. A186363.

Programs

  • Maple
    g := exp(-z)/(1-sin(z)): gser := series(g, z = 0, 28): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 24);
  • Mathematica
    CoefficientList[Series[E^(-x)/(1-Sin[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)

Formula

E.g.f.: exp(-z)/(1-sin(z)).
G.f.: 1/(1-x^2/(1-x-3*x^2/(1-2*x-6*x^2/(1-3*x-10*x^2/(1-.../(1-n*x-((n+1)*(n+2)/2)*x^2/(1-... (continued fraction). - Paul Barry, Apr 11 2011
a(n) ~ n! * n * exp(-Pi/2) * 2^(n+3) / Pi^(n+2). - Vaclav Kotesovec, Oct 08 2013
G.f.: conjecture: T(0), where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x*k)*(1-x*(k+1))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2013

A154603 Binomial transform of reduced tangent numbers (A002105).

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 110, 400, 1757, 7861, 41402, 220540, 1358183, 8405203, 59340710, 418689544, 3335855897, 26440317193, 234747589106, 2065458479476, 20224631361251, 195625329965671, 2094552876276830, 22092621409440256
Offset: 0

Views

Author

Paul Barry, Jan 12 2009

Keywords

Comments

Hankel transform is A154604.

Crossrefs

Programs

  • Magma
    A002105:= func< n | (-1)^(n+1)*2^n*(4^n - 1)*Bernoulli(2*n)/n >;
    b:= func< n | (n mod 2) eq 0 select A002105(Floor(n/2)+1) else 0 >;
    A154603:= func< n | (&+[Binomial(n,k)*b(k): k in [0..n]]) >;
    [A154603(n): n in [0..30]]; // G. C. Greubel, Sep 20 2024
    
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x]Sec[x/Sqrt[2]]^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 30 2013 *)
  • SageMath
    def A002105(n): return (-1)^(n+1)*2^n*(4^n -1)*bernoulli(2*n)/n
    def b(n): return A002105(n//2 +1) if n%2==0 else 0
    def A154603(n): return sum(binomial(n,k)*b(k) for k in range(n+1))
    [A154603(n) for n in range(31)] # G. C. Greubel, Sep 20 2024

Formula

G.f: 1/(1-x-x^2/(1-x-3x^2/(1-x-6x^2/(1-x-10x^2/(1-x-15x^2..... (continued fraction);
E.g.f.: exp(x)*(sec(x/sqrt(2))^2);
G.f.: 1/(x*Q(0)), where Q(k)= 1/x - 1 - (k+1)*(k+2)/2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 26 2013
G.f.: 1/Q(0), where Q(k)= 1 - x - 1/2*x^2*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 04 2013
a(n) ~ n! * 2^(2+n/2)*n*(exp(sqrt(2)*Pi)+(-1)^n) / (Pi^(n+2)*exp(Pi/sqrt(2))). - Vaclav Kotesovec, Oct 02 2013
G.f.: T(0)/(1-x), where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 14 2013
a(n) = Sum_{k=0..n} binomial(n,k)*b(k), where b(n) = A002105((n+2)/2) if n mod 2 = 0 otherwise b(n) = 0. - G. C. Greubel, Sep 20 2024

Extensions

Typo in e.g.f. fixed by Vaclav Kotesovec, Oct 02 2013
Showing 1-2 of 2 results.