cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348580 Expansion of e.g.f. exp(x) / (1 - sin(x)).

Original entry on oeis.org

1, 2, 5, 15, 53, 217, 1015, 5355, 31513, 204857, 1458875, 11299695, 94600373, 851419597, 8198959735, 84124450035, 916270051633, 10559066809937, 128362804540595, 1641730799916375, 22037407161945293, 309782122281453877, 4551072446448773455, 69747642031977698715
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 24 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(o-1+j, u-j), j=1..u))
        end:
    a:= n-> add(binomial(n, k)*b(k+1, 0), k=0..n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Oct 24 2021
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[x]/(1 - Sin[x]), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(x='x+O('x^40)); Vec(serlaplace(exp(x)/(1-sin(x)))) \\ Michel Marcus, Oct 24 2021

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A000111(k+1).
a(n) ~ 2^(n + 7/2) * n^(n + 3/2) / (Pi^(n + 3/2) * exp(n - Pi/2)). - Vaclav Kotesovec, Oct 25 2021

A186363 Triangle read by rows: T(n,k) is the number of cycle-up-down permutations of {1,2,...,n} having k fixed points (0 <= k <= n). A permutation is said to be cycle-up-down if it is a product of up-down cycles. A cycle (b(1), b(2), ...) is said to be up-down if, when written with its smallest element in the first position, it satisfies b(1) < b(2) > b(3) < ... .

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 5, 4, 6, 0, 1, 15, 25, 10, 10, 0, 1, 71, 90, 75, 20, 15, 0, 1, 341, 497, 315, 175, 35, 21, 0, 1, 1945, 2728, 1988, 840, 350, 56, 28, 0, 1, 12135, 17505, 12276, 5964, 1890, 630, 84, 36, 0, 1, 84091, 121350, 87525, 40920, 14910, 3780, 1050, 120, 45, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Feb 28 2011

Keywords

Comments

Sum of entries in row n is A000111(n+1) (the Euler or up-down numbers).
T(n,0) = A186364(n).
T(n,k) = T(n-k,0)*binomial(n,k).
Sum_{k=0..n} k*T(n,k) = A186365(n).

Examples

			T(3,1)=3 because we have (1)(23), (12)(3), and (13)(2).
T(4,2)=6 because we have (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4), and (14)(2)(3).
Triangle starts:
   1;
   0,  1;
   1,  0,  1;
   1,  3,  0,  1;
   5,  4,  6,  0,  1;
  15, 25, 10, 10,  0,  1;
		

Crossrefs

Programs

  • Maple
    G := exp((x-1)*z)/(1-sin(z)): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 10 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 10 do seq(coeff(P[n], x, j), j = 0 .. n) end do; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, SeriesCoefficient[Exp[-x]/(1 - Sin[x]), {x, 0, n}] n!, T[n - k, 0] Binomial[n, k]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 24 2018 *)

Formula

E.g.f. = exp((x-1)z)/(1-sin z).
The trivariate e.g.f. H(t,s,z) of the cycle-up-down permutations of {1,2,...,n} with respect to size (marked by z), number of cycles (marked by t), and number of fixed points (marked by x) is given by H(t,x,z) = exp((x-1)*t*z)/(1-sin(z))^t.

A321632 Expansion of e.g.f. (1 + sin(x))/exp(x).

Original entry on oeis.org

1, 0, -1, 1, 1, -5, 9, -9, 1, 15, -31, 31, 1, -65, 129, -129, 1, 255, -511, 511, 1, -1025, 2049, -2049, 1, 4095, -8191, 8191, 1, -16385, 32769, -32769, 1, 65535, -131071, 131071, 1, -262145, 524289, -524289, 1, 1048575, -2097151, 2097151, 1, -4194305, 8388609, -8388609
Offset: 0

Views

Author

Paolo P. Lava, Nov 16 2018

Keywords

Comments

A140323(n) = |a(4*n-1)| = |a(4*n-2)|, A247281(n) = |a(4*n+1)|.
The absolute values of the coefficients of the expansion of the reciprocal of this function are listed in A186364.

Crossrefs

Programs

  • Maple
    seq(factorial(n)*coeff(series((1+sin(x))/exp(x),x=0,48),x,n),n=0..47);
  • Mathematica
    With[{nn=50},CoefficientList[Series[(1+Sin[x])/Exp[x],{x,0,nn}],x] Range[ 0,nn]!] (* or *) LinearRecurrence[{-3,-4,-2},{1,0,-1},50] (* Harvey P. Dale, Jul 21 2021 *)
  • PARI
    Vec((1 + 3*x + 3*x^2) / ((1 + x)*(1 + 2*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 16 2018

Formula

a(4*k) = 1;
a(4*k+1) = (-4)^k - 1;
a(4*k+2) = -2*a(4*k+1) - 1 = -2*(-4)^k + 1;
a(4*k+3) = 2*a(4*k+1) + 1 = 2*(-4)^k - 1.
From Colin Barker, Nov 16 2018: (Start)
G.f.: (1 + 3*x + 3*x^2) / ((1 + x)*(1 + 2*x + 2*x^2)).
a(n) = (-1)^n + i/2*((-1-i)^n - (-1+i)^n), where i=sqrt(-1).
a(n) = -3*a(n-1) - 4*a(n-2) - 2*a(n-3) for n>2. (End)
Showing 1-3 of 3 results.