cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154604 Hankel transform of reduced tangent numbers.

Original entry on oeis.org

1, 1, 3, 54, 9720, 26244000, 1488034800000, 2362404048480000000, 135019896025206528000000000, 347259290825980971841536000000000000, 49121618545275670528799969525760000000000000000
Offset: 0

Views

Author

Paul Barry, Jan 12 2009

Keywords

Comments

Hankel transform of A002105 (with interpolated zeros).
Hankel transform of A154603.

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (&*[(Binomial(k+1,2))^(n-k+1): k in [1..n]]): n in [0..15]]; // G. C. Greubel, May 30 2024
    
  • Mathematica
    Table[Product[(k*(k+1)/2)^(n - k + 1), {k, 1, n}], {n, 0, 12}] (* Vaclav Kotesovec, Nov 13 2022 *)
  • PARI
    a(n) = prod(k=1, n, binomial(k+1,2)^(n-k+1)); \\ Michel Marcus, Nov 13 2022
    
  • SageMath
    [product((binomial(k+1,2))^(n-k+1) for k in range(1,n+1)) for n in range(16)] # G. C. Greubel, May 30 2024

Formula

a(n) = Product_{k=1..n} C(k+1,2)^(n-k+1).
a(n) ~ n^(n^2 + 3*n + 7/3) * Pi^(n + 3/2) / (A^2 * 2^((n^2 - n - 3)/2) * exp(3*n^2/2 + 3*n - 1/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 13 2022