A154615 a(n) = A022998(n)^2.
0, 1, 16, 9, 64, 25, 144, 49, 256, 81, 400, 121, 576, 169, 784, 225, 1024, 289, 1296, 361, 1600, 441, 1936, 529, 2304, 625, 2704, 729, 3136, 841, 3600, 961, 4096, 1089, 4624, 1225, 5184, 1369, 5776, 1521, 6400, 1681, 7056, 1849, 7744, 2025, 8464, 2209, 9216
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
Mathematica
Join[{0}, Denominator[Table[(1/4)*(1 - 1/n^2), {n, 1, 50}]]] (* or *) Table[(1/2)*(5 + 3*(-1)^n)*n^2 {n,0,50}] (* G. C. Greubel, Jul 20 2017 *)
-
PARI
for(n=0, 50, print1((1/2)*(5 + 3*(-1)^n)*n^2, ", ")) \\ G. C. Greubel, Jul 20 2017
Formula
Denominators of 1/4 - 1/(2n)^2, if n>0.
a(n) = A061038(2*n) (bisection).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
G.f.: x*(1+16*x+6*x^2+16*x^3+x^4)/((1-x)^3*(1+x)^3).
From G. C. Greubel, Jul 20 2017: (Start)
a(n) = (1/2)*(5 + 3*(-1)^n)*n^2.
E.g.f.: x*( (4*x +1)*cosh(x) + (x+4)*sinh(x) ). (End)
Sum_{n>=1} 1/a(n) = 13*Pi^2/96. - Amiram Eldar, Aug 13 2022
Extensions
Edited, offset set to 1, and extended by R. J. Mathar, Sep 07 2009
a(0) added Oct 21 2009
Comments