cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A245042 Primes of the form (k^2+4)/5.

Original entry on oeis.org

17, 73, 89, 193, 337, 521, 953, 1009, 1249, 1657, 2377, 2833, 3329, 3433, 4441, 4561, 5849, 6553, 7297, 8081, 8737, 9769, 11617, 12401, 12601, 13417, 15569, 16937, 17881, 18121, 20353, 21649, 27529, 28729, 29033, 30577, 33457, 35449, 36809, 46273, 49801
Offset: 1

Views

Author

Chai Wah Wu, Jul 10 2014

Keywords

Comments

Also equal to primes p such that 5*p-4 is a perfect square.

Crossrefs

Programs

  • Mathematica
    Select[(Range[500]^2+4)/5,PrimeQ] (* Harvey P. Dale, Jul 13 2014 *)
  • Python
    import sympy
    L = (k**2 + 4 for k in range(10**3))
    [n//5 for n in L if n % 5 == 0 and sympy.ntheory.isprime(n//5)]

A245045 Primes of the form (k^2+2)/6.

Original entry on oeis.org

3, 11, 17, 43, 67, 113, 131, 193, 241, 353, 523, 641, 683, 1291, 1601, 1667, 1873, 2017, 2243, 2731, 3083, 3361, 3851, 4483, 4817, 4931, 5281, 5521, 7211, 8363, 8513, 8971, 9283, 9923, 10753, 11971, 13633, 16433, 17713, 18371, 18593, 19267, 21841, 22571
Offset: 1

Views

Author

Chai Wah Wu, Jul 10 2014

Keywords

Examples

			When k=4, (k^2+2)/6 = 3 is prime, so 4 is a member of the sequence. since putting k = 0, 1, 2, or 3 does not give a prime, so 4 is the first term.
		

Crossrefs

Cf. A154616, A002327, A066436. First 5 terms equal to A078116. First 4 terms equal to A127996.

Programs

  • Python
    import sympy
    [(k**2+2)/6 for k in range(10**6) if sympy.ntheory.isprime((k**2+2)/6) & ((k**2+2)/6).is_integer()]

A154618 Triangle read by rows: integer values of T(n,m) = (4*m*n+2*m+2*n-3)/3.

Original entry on oeis.org

7, 15, 17, 39, 29, 55, 27, 61, 95, 43, 81, 119, 37, 83, 129, 175, 57, 107, 157, 207, 47, 105, 163, 221, 279, 71, 133, 195, 257, 319, 57, 127, 197, 267, 337, 407, 85, 159, 233, 307, 381, 455, 67, 149, 231, 313, 395, 477, 559, 99, 185, 271, 357, 443, 529, 615, 77
Offset: 1

Views

Author

Vincenzo Librandi, Jan 16 2009

Keywords

Examples

			The sequence contains the integers selected from the full table:
5/3;
11/3,7;
17/3,31/3,15;
23/3,41/3,59/3,77/3;
29/3,17,73/3,95/3,39;
35/3,61/3,29,113/3,139/3,55;
41/3,71/3,101/3,131/3,161/3,191/3,221/3;
47/3,27,115/3,149/3,61,217/3,251/3,95;
		

Crossrefs

Programs

  • Mathematica
    Select[Flatten[Table[(4*m*n+2*m+2*n-3)/3,{m,30},{n,m}]],IntegerQ] (* Harvey P. Dale, Jun 10 2015 *)

Extensions

Keyword:tabl removed, appearance of fractions clarified by R. J. Mathar, Oct 16 2009

A154632 Odd primes p such that (4*p^2-8*p-9)/3 is a prime.

Original entry on oeis.org

5, 17, 23, 41, 59, 71, 89, 149, 197, 233, 239, 347, 359, 401, 419, 449, 563, 683, 761, 773, 827, 887, 971, 977, 1049, 1061, 1097, 1193, 1277, 1373, 1439, 1553, 1571, 1787, 1871, 1877, 1931, 2069, 2267, 2273, 2381, 2417, 2447, 2687, 2699, 2777, 2843, 2957
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Examples

			For p=5, (4*p^2-8*p-9)/3 = 17; for p=149, (4*p^2-8*p-9)/3 = 29201.
		

Crossrefs

Cf. A154616.
Subsequence of A007528.

Programs

  • Maple
    a := proc (n) if isprime(n) = true and type((4/3)*n^2-(8/3)*n-3, integer) = true and isprime((4/3)*n^2-(8/3)*n-3) = true then n else end if end proc: seq(a(n), n = 2 .. 4000); # Emeric Deutsch, Jan 20 2009
  • Mathematica
    Select[Prime[Range[2, 500]], PrimeQ[(4 #^2 - 8 # - 9)/3] &] (* Harvey P. Dale, May 20 2012 *)

Extensions

Extended by Emeric Deutsch, Jan 20 2009
Formatting of definition clarified by Harvey P. Dale, May 20 2012

A157417 Primes of the form floor((4*n^2-8*n-9)/3).

Original entry on oeis.org

7, 17, 29, 43, 61, 103, 157, 257, 337, 641, 701, 829, 967, 1117, 1277, 1361, 1447, 1723, 2129, 2237, 2347, 3067, 3329, 3463, 4177, 4327, 4481, 4637, 4957, 5981, 6343, 6529, 6907, 7297, 7901, 8317, 9181, 9403, 9629, 9857, 10321, 11527, 11777, 12541, 13063
Offset: 1

Views

Author

N. J. A. Sloane, Jun 25 2010

Keywords

Comments

Added in order to clarify A154616.

Programs

  • Magma
    [a: n in [3..100] | IsPrime(a) where a is Floor((4*n^2-8*n-9)/3)]; // Vincenzo Librandi, Mar 21 2013
  • Mathematica
    Select[Table[Floor[(4 n^2 - 8 n - 9)/3], {n, 3, 100}], PrimeQ] (* Vincenzo Librandi, Mar 21 2013 *)

A242930 Primes of the form (k^2+7)/11.

Original entry on oeis.org

37, 53, 193, 373, 421, 673, 1061, 2213, 2753, 3637, 4481, 5237, 5413, 7333, 7541, 8513, 8737, 9781, 11393, 12853, 14401, 15733, 17761, 19237, 21121, 25153, 25537, 27701, 29537, 34273, 34721, 39841, 42533, 47653, 50593, 51137
Offset: 1

Views

Author

Chai Wah Wu, Jul 10 2014

Keywords

Comments

Also equal to primes p such that 11*p-7 is a perfect square.

Crossrefs

Programs

  • Python
    import sympy
    [(k**2+7)/11 for k in range(10**6) if sympy.ntheory.isprime((k**2+7)/11) & ((k**2+7)/11).is_integer()]
Showing 1-6 of 6 results.