A154637 a(n) is the ratio of the sum of squares of the bends of the circles that are added in the n-th generation of Apollonian packing, to the sum of squares of the bends of the initial three circles.
1, 2, 66, 1314, 26082, 517698, 10275714, 203961186, 4048396578, 80356048002, 1594975770306, 31658447262114, 628384017931362, 12472705016840898, 247568948283023874, 4913960850609954786, 97536510167350024098, 1935988320795170617602, 38427156885401362279746, 762735172745641733742114
Offset: 0
Examples
Starting with three circles with bends -1,2,2, the ssq is 9. The first derived generation has two circles, each with bend 3. So a(1) = (9+9)/9 = 2.
Links
- Colin Barker, Table of n, a(n) for n = 0..750
- Colin Mallows, Growing Apollonian packings, J. Integer Sequences v.12, article 09.2.1 (2009).
- Index entries for linear recurrences with constant coefficients, signature (20,-3).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(29 z^2 - 18 z + 1)/(3 z^2 - 20 z + 1), {z, 0, 100}], z] (* and *) LinearRecurrence[{20, -3}, {1, 2, 66}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
-
PARI
Vec((1-18*x+29*x^2)/(1-20*x+3*x^2) + O(x^30)) \\ Colin Barker, Nov 16 2016
Formula
G.f.: (1-18*x+29*x^2) / (1-20*x+3*x^2).
From Colin Barker, Nov 16 2016: (Start)
a(n) = ((133-13*sqrt(97))*(10+sqrt(97))^n - (10-sqrt(97))^n*(133+13*sqrt(97))) / (3*sqrt(97)) for n>0.
a(n) = 20*a(n-1) - 3*a(n-2) for n>2.
(End)
Extensions
More terms from N. J. A. Sloane, Nov 22 2009
Comments