A154647 Triangle, T(n, k) = [x^k]( p(x, n) ), where (1/2)*(1-x)^(n+1) * Sum_{j >= 0} ((4*j + 3)^n + (4*j+1)^n )*x^j, read by rows.
1, 2, 2, 5, 22, 5, 14, 178, 178, 14, 41, 1308, 3446, 1308, 41, 122, 9234, 52084, 52084, 9234, 122, 365, 64082, 692707, 1434812, 692707, 64082, 365, 1094, 442082, 8559030, 32285474, 32285474, 8559030, 442082, 1094, 3281, 3048184, 101121500, 641507528, 1151050534, 641507528, 101121500, 3048184, 3281
Offset: 0
Examples
Triangle begins as: 1; 2, 2; 5, 22, 5; 14, 178, 178, 14; 41, 1308, 3446, 1308, 41; 122, 9234, 52084, 52084, 9234, 122; 365, 64082, 692707, 1434812, 692707, 64082, 365; 1094, 442082, 8559030, 32285474, 32285474, 8559030, 442082, 1094;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
m:=12; R
:=PowerSeriesRing(Integers(), m+2); p:= func< n,x | (1-x)^(n+1)*(&+[((4*j+3)^n+(4*j+1)^n)/2*x^j: j in [0..m+2]]) >; T:= func< n,k | Coefficient(R!( p(n,x) ), k) >; [T(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, May 27 2024 -
Mathematica
m=12; p[x_, n_]= (1/2)*(1-x)^(n+1)*Sum[((4*j+3)^n + (4*j+1)^n)*x^j, {j,0,m +2}]; T[n_, k_]:= Coefficient[p[x, n], x, k]; Table[T[n,k], {n,0,m}, {k,0,n}]//Flatten
-
SageMath
m=12 def p(x,n): return (1-x)^(n+1)*sum( ((4*j+3)^n +(4*j+1)^n)*x^j for j in range(m+2))/2 def T(n,k): return ( p(x,n) ).series(x, n+1).list()[k] flatten([[T(n,k) for k in range(n+1)] for n in range(m+1)]) # G. C. Greubel, May 27 2024
Formula
T(n, k) = [x^k]( p(x, n) ), where (1/2)*(1-x)^(n+1) * Sum_{j >= 0} ((4*j + 3)^n + (4*j+1)^n )*x^j.
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = A047053(n) (row sums).
T(n, 0) = T(n, n) = A007051(n). - G. C. Greubel, May 27 2024
Extensions
Edited by G. C. Greubel, May 27 2024