cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154676 Numbers n = 103*k^2 such that (n-1,n+1) is a twin prime pair (thus k = 6*m).

Original entry on oeis.org

2317500, 12047292, 26163648, 43250112, 47347452, 61704828, 168228252, 333720000, 351755712, 426127068, 513127872, 840143808, 979638768, 998790588, 1089276912, 1330434108, 1357220700, 1388809152, 1694467008, 1927570428, 1986835392, 2035992348, 2136108348, 2858437872, 3070594800, 3241626300, 3903322608
Offset: 1

Views

Author

Keywords

Comments

Original definition: Averages of twin prime pairs n such that n*103 and n/103 are squares.
All terms are of the form 3708*k^2. - Zak Seidov, Jan 15 2009
Obviously n*103 is a square iff n/103 is a square, say k^2. But n=103k^2 can't be the average of a twin prime pair unless it's a multiple of 6, thus k=6m and n=103*36*m^2. - M. F. Hasler, Apr 11 2009

Crossrefs

Programs

  • Maple
    select(t -> isprime(t+1) and isprime(t-1), [seq(3708*i^2, i=1..2000)]); # Robert Israel, Mar 13 2019
  • Mathematica
    lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n*103)^(1/2); If[Floor[s]==s,AppendTo[lst,n]]],{n,9!,2*11!,6}]; lst (*...and/or...*) lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n/103)^(1/2); If[Floor[s]==s,AppendTo[lst,n]]],{n,9!,2*11!,6}]; lst
    Select[3708*Range[1200]^2,AllTrue[#+{1,-1},PrimeQ]&] (* Harvey P. Dale, May 15 2025 *)
  • PARI
    forstep(k=0,1e4,6, isprime(k^2*103+1) & isprime(k^2*103-1) & print1(k^2*103,",")) \\ M. F. Hasler, Apr 11 2009

Extensions

Edited and extended by M. F. Hasler, Apr 11 2009