cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154685 Triangle read by rows: T(n, k) = 2*n*k + n + k + 4.

Original entry on oeis.org

8, 11, 16, 14, 21, 28, 17, 26, 35, 44, 20, 31, 42, 53, 64, 23, 36, 49, 62, 75, 88, 26, 41, 56, 71, 86, 101, 116, 29, 46, 63, 80, 97, 114, 131, 148, 32, 51, 70, 89, 108, 127, 146, 165, 184, 35, 56, 77, 98, 119, 140, 161, 182, 203, 224, 38, 61, 84, 107, 130, 153, 176, 199, 222, 245, 268
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Comments

The terms form a subset of A153039 because 2*T(n, k) - 7 = (2*n+1)*(2*k+1) are not prime.

Examples

			Triangle begins:
   8;
  11, 16;
  14, 21, 28;
  17, 26, 35, 44;
  20, 31, 42, 53,  64;
  23, 36, 49, 62,  75,  88;
  26, 41, 56, 71,  86, 101, 116;
  29, 46, 63, 80,  97, 114, 131, 148;
  32, 51, 70, 89, 108, 127, 146, 165, 184;
  35, 56, 77, 98, 119, 140, 161, 182, 203, 224;
		

Crossrefs

Cf. A151675 (row sums).
Similar triangle: A155724.
Columns k: A016789 (k=1), A016861 (k=2).
Main diagonal: A137882, A271649.

Programs

Formula

Sum_{k=1..n} T(n, k) = A151675(n). - N. J. A. Sloane, May 31 2009
T(n, k) = A155724(n,k) + 8. - L. Edson Jeffery, Oct 12 2012
From G. C. Greubel, Jan 21 2025: (Start)
T(2*n-1, n) = 4*n^2 + n + 3.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1/4)*(9*(1-(-1)^n) + 2*(2-3*(-1)^n)*n - 4*(-1)^n*n^2).
G.f.: x*y*(8 - 5*(x+y) + 4*x*y)/((1-x)*(1-y))^2.
E.g.f.: 4 - (4+x)*exp(x) - (4+y)*exp(y) + (4+x+y+2*x*y)*exp(x+y).
(End)

Extensions

Clarified comment. - R. J. Mathar, Jan 24 2009