A154692 Triangle read by rows: T(n, k) = (2^(n-k)*3^k + 2^k*3^(n-k))*binomial(n, k).
2, 5, 5, 13, 24, 13, 35, 90, 90, 35, 97, 312, 432, 312, 97, 275, 1050, 1800, 1800, 1050, 275, 793, 3492, 7020, 8640, 7020, 3492, 793, 2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315, 6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817
Offset: 0
Examples
Triangle begins 2; 5, 5; 13, 24, 13; 35, 90, 90, 35; 97, 312, 432, 312, 97; 275, 1050, 1800, 1800, 1050, 275; 793, 3492, 7020, 8640, 7020, 3492, 793; 2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315; 6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Lakhtakia, R. Messier, V. K. Varadan, and V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3.
Crossrefs
Programs
-
Magma
A154692:= func< n,k | (2^(n-k)*3^k + 2^k*3^(n-k))*Binomial(n,k) >; [A154692(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
-
Maple
A154692 := proc(n,m) (2^(n-m)*3^m+2^m*3^(n-m))*binomial(n,m) ; end proc: seq(seq(A154692(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Oct 24 2011
-
Mathematica
p=2; q=3; T[n_, m_]= (p^(n-m)*q^m + p^m*q^(n-m))*Binomial[n,m]; Table[T[n,m], {n,0,10}, {m,0,n}]//Flatten
-
Python
from sage.all import * def A154692(n,k): return (pow(2,n-k)*pow(3,k)+pow(2,k)*pow(3,n-k))*binomial(n,k) print(flatten([[A154692(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025
Formula
From G. C. Greubel, Jan 18 2025: (Start)
T(2*n, n) = A119309(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A010673(n+1).