A154693 Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*A008292(n+1, k+1).
2, 3, 3, 5, 16, 5, 9, 66, 66, 9, 17, 260, 528, 260, 17, 33, 1026, 3624, 3624, 1026, 33, 65, 4080, 23820, 38656, 23820, 4080, 65, 129, 16302, 154548, 374856, 374856, 154548, 16302, 129, 257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260, 257
Offset: 0
Examples
The triangle begins as: 2; 3, 3; 5, 16, 5; 9, 66, 66, 9; 17, 260, 528, 260, 17; 33, 1026, 3624, 3624, 1026, 33; 65, 4080, 23820, 38656, 23820, 4080, 65; 129, 16302, 154548, 374856, 374856, 154548, 16302, 129; 257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260, 257;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Lakhtakia, R. Messier, V. K. Varadan, and V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2501, (FIG. 3)
Programs
-
Magma
A154693:= func< n,k | (2^(n-k) + 2^k)*EulerianNumber(n+1, k) >; [A154693(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 17 2025
-
Mathematica
p=2; q=1; A008292[n_,k_]:= A008292[n,k]= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}]; T[n_, m_]:= (p^(n-m)*q^m + p^m*q^(n-m))*A008292[n+1,m+1]; Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
-
SageMath
from sage.combinat.combinat import eulerian_number def A154693(n,k): return (2^(n-k) +2^k)*eulerian_number(n+1,k) print(flatten([[A154693(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 17 2025
Extensions
Definition simplified by the Assoc. Eds. of the OEIS - Aug 08 2010.
Comments