cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154695 Triangular sequence defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n), where b(n) = coefficients of p(x, n) = 2^n*(1-x)^(n+1) * LerchPhi(x, -n, 1/2), and r=2, q=1.

Original entry on oeis.org

2, 3, 3, 5, 24, 5, 9, 138, 138, 9, 17, 760, 1840, 760, 17, 33, 4266, 20184, 20184, 4266, 33, 65, 24548, 210860, 376768, 210860, 24548, 65, 129, 143814, 2183652, 6233352, 6233352, 2183652, 143814, 129, 257, 851760, 22549616, 99411520, 149600448, 99411520, 22549616, 851760, 257
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Examples

			Triangle begins as:
    2;
    3,      3;
    5,     24,       5;
    9,    138,     138,       9;
   17,    760,    1840,     760,      17;
   33,   4266,   20184,   20184,    4266,      33;
   65,  24548,  210860,  376768,  210860,   24548,     65;
  129, 143814, 2183652, 6233352, 6233352, 2183652, 143814, 129;
		

Programs

  • Mathematica
    r = 2; q = 1; p[x_, n_] = 2^n*(1-x)^(n+1)*LerchPhi[x, -n, 1/2];
    b:= Table[CoefficientList[Series[p[x, n], {x, 0, 30}], x], {n, 0, 20}];
    T[n_, m_]:= (r^(n-m)*q^m + r^m*q^(n-m))*b[[n+1]][[m+1]];
    Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* modified by G. C. Greubel, May 08 2019 *)

Formula

Let r = 2 and q = 1 then b(n) = the coefficients of p(x, n) = 2^n*(1 - x)^(n + 1)* LerchPhi(x, -n, 1/2). The triangle is then defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n).

Extensions

Edited by G. C. Greubel, May 08 2019