Original entry on oeis.org
1, 1, 1, 1, 20, 1, 1, 130, 130, 1, 1, 744, 1824, 744, 1, 1, 4234, 20152, 20152, 4234, 1, 1, 24484, 210796, 376704, 210796, 24484, 1, 1, 143686, 2183524, 6233224, 6233224, 2183524, 143686, 1, 1, 851504, 22549360, 99411264, 149600192, 99411264
Offset: 0
{1},
{1, 1},
{1, 20, 1},
{1, 130, 130, 1},
{1, 744, 1824, 744, 1},
{1, 4234, 20152, 20152, 4234, 1},
{1, 24484, 210796, 376704, 210796, 24484, 1},
{1, 143686, 2183524, 6233224, 6233224, 2183524, 143686, 1},
{1, 851504, 22549360, 99411264, 149600192, 99411264, 22549360, 851504, 1},
{1, 5075122, 231836368, 1562973472, 3331837600, 3331837600, 1562973472, 231836368, 5075122, 1},
{1, 30344508, 2370195636, 24248921920, 72553861536, 97733916928, 72553861536, 24248921920, 2370195636, 30344508, 1}
-
Clear[t, p, q, n, m, a];
p[x_, n_] = 2^n*(1 - x)^(n + 1)*LerchPhi[x, -n, 1/2];
a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
p = 2; q = 1;
t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*a[[n + 1]][[m + 1]];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
A080253
a(n) is the number of elements in the Coxeter complex of type B_n (or C_n).
Original entry on oeis.org
1, 3, 17, 147, 1697, 24483, 423857, 8560947, 197613377, 5131725123, 148070287697, 4699645934547, 162723741209057, 6103779096411363, 246564971326084337, 10671541841672056947, 492664975795819140737, 24166020791610523843203
Offset: 0
a(2)=17 as follows. Let (W,S) be a Coxeter system of type B_2. By definition the elements of the associated complex are right cosets of "special parabolic subgroups". These are simply the subgroups generated by subsets of S. In our case they have orders 1,2,2,8 and hence have 8,4,4,1 cosets respectively, giving a total of 17.
- Kenneth S. Brown, Buildings, Springer-Verlag, 1989.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
- Peter C. Fishburn, Signed Orders, Choice Probabilities and Linear Polytopes, Journal of Mathematical Psychology, Volume 45, Issue 1, (2001), pp. 53-80.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Eric Weisstein's MathWorld, Polylogarithm.
-
A080253 := proc(n) option remember; local k; if n <1 then 1 else 1 + add(2^r*binomial(n,r)*A080253(n-r),r=1..n); fi; end; seq(A080253(n),n=0..30); # Detlef Pauly
-
t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[c[n], {n, 0, 100}] (* Emanuele Munarini, Oct 04 2012 *)
CoefficientList[Series[E^x/(2-E^(2*x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 07 2015 *)
Round@Table[(-1)^(n + 1) (PolyLog[-n, Sqrt[2]] - PolyLog[-n, -Sqrt[2]])/(2 Sqrt[2]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
-
t(n):=sum(stirling2(n,k)*k!,k,0,n);
c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
makelist(c(n),n,0,40); /* Emanuele Munarini, Oct 04 2012 */
-
def A080253(n):
return add(A060187(n, k) << (n-k) for k in (0..n))
[A080253(n) for n in (0..17)] # Peter Luschny, Apr 26 2013
More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 14 2003
Original entry on oeis.org
1, 1, 1, 1, 60, 1, 1, 656, 656, 1, 1, 5832, 16464, 5832, 1, 1, 49496, 302486, 302486, 49496, 1, 1, 419412, 4933332, 10171944, 4933332, 419412, 1, 1, 3593036, 76425506, 280498526, 280498526, 76425506, 3593036, 1, 1, 31167600, 1157982288
Offset: 0
{1},
{1, 1},
{1, 60, 1},
{1, 656, 656, 1},
{1, 5832, 16464, 5832, 1},
{1, 49496, 302486, 302486, 49496, 1},
{1, 419412, 4933332, 10171944, 4933332, 419412, 1},
{1, 3593036, 76425506, 280498526, 280498526, 76425506, 3593036, 1},
{1, 31167600, 1157982288, 6978681888, 12117629472, 6978681888, 1157982288, 31167600, 1},
{1, 273237776, 17387745806, 164112248126, 449798124926, 449798124926, 164112248126, 17387745806, 273237776, 1},
{1, 2414712204, 260247533196, 3735760480536, 15279843395064, 23749342002264, 15279843395064, 3735760480536, 260247533196, 2414712204, 1}
-
Clear[t, p, q, n, m, a];
p[x_, n_] = 2^n*(1 - x)^(n + 1)*LerchPhi[x, -n, 1/2];
a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
p = 2; q = 3;
t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*a[[n + 1]][[m + 1]];
Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
Flatten[%]
Showing 1-3 of 3 results.
Comments