A154696 Triangular sequence defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n), where b(n) = coefficients of p(x, n) = 2^n*(1-x)^(n+1) * LerchPhi(x, -n, 1/2), and r=2, q=3.
2, 5, 5, 13, 72, 13, 35, 690, 690, 35, 97, 5928, 16560, 5928, 97, 275, 49770, 302760, 302760, 49770, 275, 793, 420204, 4934124, 10172736, 4934124, 420204, 793, 2315, 3595350, 76427820, 280500840, 280500840, 76427820, 3595350, 2315
Offset: 0
Examples
Triangle begins as: 2; 5, 5; 13, 72, 13; 35, 690, 690, 35; 97, 5928, 16560, 5928, 97; 275, 49770, 302760, 302760, 49770, 275; 793, 420204, 4934124, 10172736, 4934124, 420204, 793;
Links
- G. C. Greubel, Rows n = 0..40 of triangle, flattened
- A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3.
Programs
-
Mathematica
r = 2; q = 3; p[x_, n_] = 2^n*(1-x)^(n+1)*LerchPhi[x, -n, 1/2]; b:= Table[CoefficientList[Series[p[x, n], {x, 0, 30}], x], {n, 0, 20}]; T[n_, m_]:= (r^(n-m)*q^m + r^m*q^(n-m))*b[[n+1]][[m+1]]; Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* modified by G. C. Greubel, May 08 2019 *)
Formula
Let r = 2 and q = 3 then b(n) = the coefficients of p(x, n) = 2^n*(1 - x)^(n + 1)* LerchPhi(x, -n, 1/2). The triangle is then defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n).
Extensions
Edited by G. C. Greubel, May 08 2019