A154704 a(n) = smallest number k such that k-1 and k+1 both have exactly n prime divisors (counted with multiplicity).
4, 5, 19, 55, 271, 1889, 10529, 59777, 101249, 406783, 6581249, 12164095, 65071999, 652963841, 6548416001, 13858918399, 145046192129, 75389157377, 943344975871, 23114453401601, 108772434771967, 101249475018751, 551785225781249, 9740041658826751, 136182187711004671, 4560483868737535
Offset: 1
Keywords
Examples
For k = 4, k-1 = 3 and k+1 = 5 (twin primes) both have one factor and 4 is the smallest such number. For k = 55, k-1 = 54 = 2*3*3*3 and k+1 = 56 = 2*2*2*7 both have four factors and 55 is the smallest such number. For k = 59777, k-1 = 59776 = 2*2*2*2*2*2*2*467 and k+1 = 59778 = 2*3*3*3*3*3*3*41 both have eight factors and 59777 is the smallest such number.
Links
- David A. Corneth, Table of n, a(n) for n = 1..36
- David A. Corneth, Upper bounds on a(n) for n = 1..89
Programs
-
Magma
S:=[]; for n:=1 to 10 do k:=3; while not &+[ f[2]: f in Factorization(k-1) ] eq n or not &+[ f[2]: f in Factorization(k+1) ] eq n do k+:=1; end while; Append(~S, k); end for; S;
-
Mathematica
a[n_]:=Module[{k=2}, While[PrimeOmega[k-1]!=n || PrimeOmega[k+1]!=n, k++]; k]; Array[a,26] (* Stefano Spezia, Apr 02 2024 *) Flatten[Table[Position[Partition[PrimeOmega[Range[410000]],3,1],?(#[[1]]==#[[3]]==n&),1,1],{n,10}]]+1//Quiet (* The program generates the first ten terms of the sequence. *) (* _Harvey P. Dale, Jul 21 2024 *) Table[SequencePosition[PrimeOmega[Range[410000]],{n,,n},1],{n,10}][[;;,1,1]]+1 (* The program generates the first ten terms of the sequence. *) (* _Harvey P. Dale, Aug 29 2024 *)
-
PARI
generate(A, B, n, k) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p, ceil(A/m)), B\m, if(bigomega(m*q+2) == k, listput(list, m*q+1))), forprime(q=p, sqrtnint(B\m, n), list=concat(list, f(m*q, q, n-1)))); list); vecsort(Vec(f(1, 2, n))); a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Aug 12 2023
Formula
a(n) = 2*A115186(n-1) + 1 for n > 1. - Hugo Pfoertner, Apr 02 2024
Extensions
a(15)-a(23) from Donovan Johnson, Jan 21 2009
a(24)-a(26) from Daniel Suteu, Aug 12 2023
Comments