cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A154736 Define k(0) = 2 and k(m) = m^2-k(m-1) for m >= 1. This is a list of those m for which k(m)+1 and k(m)-1 are both prime.

Original entry on oeis.org

3, 4, 16, 40, 64, 88, 208, 280, 352, 376, 460, 484, 508, 520, 604, 1012, 1024, 1072, 1168, 1240, 1264, 1336, 1420, 1432, 1444, 1912, 2176, 2212, 2548, 2560, 2632, 2836, 2848, 2872, 2944, 2956, 3184, 3220, 3508, 3616, 3640, 3772, 3868, 3892, 3928, 3940, 3952
Offset: 1

Views

Author

Keywords

Examples

			The initial values of k(m) are:
k(0) = 2
k(1) = 1-2 = -1
k(2) = 4+1 = 5
k(3) = 9-5 = 4 and both 3 and 5 are primes, so 3 is the first term in the sequence
k(4) = 16-4 = 12, and 11 & 13 are primes, so a(2) = 4
  and so on - _N. J. A. Sloane_, Jul 14 2022
		

Crossrefs

Cf. A154734.

Programs

  • Mathematica
    k=2;lst={};Do[k=n^2-k;If[PrimeQ[k-1]&&PrimeQ[k+1],AppendTo[lst,n]],{n,8!}];lst
    (* Second program: *)
    k = 2; Reap[Do[Set[k, m^2 - k]; If[AllTrue[k + {-1, 1}, PrimeQ], Sow[m]], {m, 4000}]][[-1, -1]] (* Michael De Vlieger, Jul 14 2022 *)
  • PARI
    a154736(upto,k0=2) = {my(k=k0); for(n=1, upto, my(kk=n^2-k); if(isprime(kk-1) && isprime(kk+1), print1(n,", ")); k=kk)};
    a154736(5000) \\ Hugo Pfoertner, Jul 14 2022

Formula

A154734(n+1) = k(a(n)) where k(m) = m*(m+1)/2+2*(-1)^m. - R. J. Mathar, Jul 16 2022

Extensions

Better name from Pontus von Brömssen, Jul 14 2022
Showing 1-1 of 1 results.