cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154748 Continued fraction for sqrt(sqrt(2) - 1), the radius vector of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant.

Original entry on oeis.org

0, 1, 1, 1, 4, 6, 1, 2, 2, 2, 1, 1, 6, 1, 179, 46, 1, 1, 3, 2, 1, 1, 3, 6, 3, 1, 1, 1, 1, 2, 1, 1, 56, 1, 1, 1, 1, 66, 1, 1, 2, 17, 8, 2, 7, 12, 1, 1, 8, 1, 2, 2, 1, 1, 2, 1, 12, 1, 2, 2, 2, 2, 1, 1, 1, 8, 1, 1, 1, 1, 2, 1, 2, 5, 1, 6, 8, 1, 1, 1, 2, 7, 1, 9, 1, 2
Offset: 0

Views

Author

Stuart Clary, Jan 14 2009

Keywords

Examples

			Sqrt(sqrt(2) - 1) = 0.643594252905582624735443437418... = [0; 1, 1, 1, 4, 6, 1, 2, 2, 2, 1, 1, 6, ...].
		

Crossrefs

Cf. A154747, A154749 and A154750 for the decimal expansion and the numerators and denominators of the convergents.

Programs

  • Magma
    ContinuedFraction(Sqrt(Sqrt(2)-1)); // Vincenzo Librandi, Dec 10 2016
  • Mathematica
    nmax = 1000; ContinuedFraction[ Sqrt[Sqrt[2] - 1], nmax + 1]
  • PARI
    contfrac(sqrt(sqrt(2) - 1)) \\ Michel Marcus, Dec 10 2016