A154796 Even partition numbers of odd numbers.
30, 56, 176, 490, 792, 1958, 3010, 6842, 89134, 124754, 451276, 614154, 831820, 2012558, 8118264, 13848650, 133230930, 214481126, 271248950, 541946240, 851376628, 1327710076, 3163127352, 4835271870, 5964539504, 7346629512
Offset: 1
Keywords
Examples
The even number 30 is in the sequence as the partition number of the odd number 9. - _Emeric Deutsch_, Aug 02 2009
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
aa:= proc(n, i) if n=0 then 1 elif n<0 or i=0 then 0 else aa(n,i):= aa(n, i-1) +aa(n-i, i) fi end: a:= proc(n) local k; if n>1 then a(n-1) fi; for k from `if`(n=1, 1, b(n-1)+2) by 2 while irem(aa(k, k), 2)=1 do od; b(n):= k; aa(k, k) end: seq(a(n), n=1..40); # Alois P. Heinz, Jul 28 2009 with(combinat): a := proc (n) if `mod`(numbpart(2*n-1), 2) = 0 then numbpart(2*n-1) else end if end proc: seq(a(n), n = 1 .. 70); # Emeric Deutsch, Aug 02 2009
-
Mathematica
Reap[Do[If[EvenQ[p = PartitionsP[n]], Sow[p]], {n, 1, 199, 2}]][[2, 1]] (* Jean-François Alcover, Nov 11 2015 *) Select[PartitionsP[Range[1,201,2]],EvenQ] (* Harvey P. Dale, Apr 03 2019 *)
-
PARI
lista(nn) = for (n=1, nn, if (((p = numbpart(2*n+1)) % 2) == 0, print1(p, ", "))); \\ Michel Marcus, Dec 19 2016
Extensions
More terms from Alois P. Heinz, Jul 28 2009
Comments