A154958 Antidiagonal sums of number triangle A154957 regarded as a lower triangular infinite matrix.
1, 1, 2, 1, 2, 1, 3, 2, 4, 2, 4, 2, 5, 3, 6, 3, 6, 3, 7, 4, 8, 4, 8, 4, 9, 5, 10, 5, 10, 5, 11, 6, 12, 6, 12, 6, 13, 7, 14, 7, 14, 7, 15, 8, 16, 8, 16, 8, 17, 9, 18, 9, 18, 9, 19, 10, 20, 10, 20, 10, 21, 11, 22, 11, 22, 11, 23, 12, 24, 12, 24, 12, 25, 13, 26, 13, 26, 13, 27, 14, 28, 14, 28
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + 2*x^7 + 4*x^8 + 2*x^9 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-2,1,1,-1).
Programs
-
Mathematica
CoefficientList[Series[1/((x - 1)^2 (x + 1)^2 (x^2 - x + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 22 2014 *) LinearRecurrence[{1,1,-2,1,1,-1},{1,1,2,1,2,1},90] (* Harvey P. Dale, Aug 26 2016 *)
-
PARI
{a(n) = if( n<-5, -a(-6-n), if( n<0, 0, polcoeff( 1 / (1 - x - x^2 + 2*x^3 - x^4 - x^5 + x^6) + x * O(x^n), n)))}; /* Michael Somos, Mar 21 2014 */
Formula
G.f.: 1/((x-1)^2*(x+1)^2*(x^2-x+1)). - Philippe Deléham, Mar 21 2014
a(n) = a(n-1) + a(n-2) - 2*a(n-3) + a(n-4) + a(n-5) - a(n-6), a(0) = 1, a(1) = 1, a(2) = 2, a(3) = 1, a(4) = 2, a(5) = 1. - Philippe Deléham, Mar 21 2014
Euler transform of length 6 sequence [ 1, 1, -1, 0, 0, 1]. - Michael Somos, Mar 21 2014
a(-6-n) = -a(n). - Michael Somos, Mar 21 2014
a(3*n) = A026741(n+1). a(3*n + 1) = A029578(n+2). a(3*n + 2) = A065423(n+3). - Michael Somos, Mar 21 2014