cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154961 2nd column of A154960.

Original entry on oeis.org

0, 1, 3, 25, 340, 7026, 204862, 8007602, 404077632, 25569505628, 1982619985192, 184861494417920, 20406183592852460, 2631875641089358912, 392163247878318070876, 66855512799464487146588, 12929525365915201064027856, 2815456378791384288128303192
Offset: 1

Views

Author

Mats Granvik, Jan 18 2009

Keywords

Comments

A052882 might have similarities with this sequence because A052882 is the 2nd column in table A154921 which is similar to A154960.

Crossrefs

Programs

  • PARI
    { (matrix(30,30,i,j,(-1)^(i!=j)*stirling(i,j,2))^(-1))[,2] } \\ Max Alekseyev, Jun 17 2011

Extensions

More terms from Max Alekseyev, Jun 17 2011

A005121 Number of ultradissimilarity relations on an n-set.

Original entry on oeis.org

1, 1, 4, 32, 436, 9012, 262760, 10270696, 518277560, 32795928016, 2542945605432, 237106822506952, 26173354092593696, 3375693096567983232, 502995942483693043200, 85750135569136650473360, 16583651916595710735271248, 3611157196483089769387182064, 879518067472225603327860638128
Offset: 1

Views

Author

Keywords

Comments

First column in A154960. - Mats Granvik, Jan 18 2009
Number of chains from minimum to maximum in the lattice of set partitions of {1, ..., n} ordered by refinement. - Gus Wiseman, Jul 22 2018

Examples

			From _Gus Wiseman_, Jul 22 2018: (Start)
The (3) = 4 chains from minimum to maximum in the lattice of set partitions of {1,2,3}:
  {{1},{2},{3}} < {{1,2,3}}
  {{1},{2},{3}} < {{1},{2,3}} < {{1,2,3}}
  {{1},{2},{3}} < {{2},{1,3}} < {{1,2,3}}
  {{1},{2},{3}} < {{3},{1,2}} < {{1,2,3}}
(End)
		

References

  • L. Babai and T. Lengyel, A convergence criterion for recurrent sequences with application to the partition lattice, Analysis 12 (1992), 109-119.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 316-321.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[StirlingS2[n, k]*a[k], {k, 1, n-1}]; Array[a, 19]
    (* Jean-François Alcover, Jun 24 2011, after Vladeta Jovovic *)
  • PARI
    {a(n) = local(A); if( n<1, 0, for(k=1, n, A = truncate(A) + x*O(x^k); A = x - A + subst(A, x, exp(x + x*O(x^k)) - 1)); n! * polcoeff(A, n))} /* Michael Somos, Sep 22 2007 */

Formula

a(n) = Sum_{i=1..n-1} N_i(n), where N_k(m) = Sum_{j=k..m-1} Stirling2(m, j)*N_{k-1}(j), m=3..n, k=2..m-1; N_1(2)=N_1(3)=...=N_1(n)=1.
a(n) = Sum_{k=1..n-1} Stirling2(n, k)*a(k) [Lengyel]. - Vladeta Jovovic, Apr 16 2003
E.g.f. satisfies Z(z) = 1/2 * (Z(exp(z)-1) - z). [Lengyel]
Asymptotic growth: a(n) ~ C_L*(n!)^2*(2log(2))^(-n)*n^(-1-1/3*log(2)) (Babai and Lengyel), with C_L = 1.0986858055... = A086053 [Flajolet and Salvy].
Sum_{k>=1} a(k-1)/fallfac(n,k) = -1/n^2 + 2*Sum_{k>=1} a(k-1)/n^k, with the falling factorials fallfac(n,k) = Product_{j=0..k-1}(n-j). - Vaclav Kotesovec, Aug 04 2015

Extensions

More terms from Vladeta Jovovic, Apr 16 2003

A154959 Triangle read by rows. Signed version of A008277.

Original entry on oeis.org

1, -1, 1, -1, -3, 1, -1, -7, -6, 1, -1, -15, -25, -10, 1, -1, -31, -90, -65, -15, 1, -1, -63, -301, -350, -140, -21, 1, -1, -127, -966, -1701, -1050, -266, -28, 1, -1, -255, -3025, -7770, -6951, -2646, -462, -36, 1
Offset: 1

Views

Author

Mats Granvik, Jan 18 2009

Keywords

Comments

Main diagonal positive, the rest of the terms negative. Matrix inverse of this triangle is A154960. Signs in columns as in A153881.
Showing 1-3 of 3 results.