A154996 a(n) = 5*a(n-1) + 20*a(n-2), n>2 ; a(0)=1, a(1)=1, a(2)=9.
1, 1, 9, 65, 505, 3825, 29225, 222625, 1697625, 12940625, 98655625, 752090625, 5733565625, 43709640625, 333219515625, 2540290390625, 19365842265625, 147635019140625, 1125491941015625, 8580160087890625, 65410639259765625
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,20).
Programs
-
Magma
I:=[1,9]; [1] cat [n le 2 select I[n] else 5*(Self(n-1) +4*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 21 2021
-
Maple
m:=30; S:=series( (1-4*x-16*x^2)/(1-5*x-20*x^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 21 2021
-
Mathematica
Join[{1},LinearRecurrence[{5,20},{1,9},20]] (* Harvey P. Dale, Jan 19 2012 *)
-
Sage
def A154996_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-4*x-16*x^2)/(1-5*x-20*x^2) ).list() A154996_list(30) # G. C. Greubel, Apr 21 2021
Formula
G.f.: (1 -4*x -16*x^2)/(1 -5*x -20*x^2).
a(n+1) = Sum_{k=0..n} A154929(n,k)*4^(n-k).
Comments