A154999 a(n) = 7*a(n-1) + 42*a(n-2), n>2; a(0)=1, a(1)=1, a(2)=13.
1, 1, 13, 133, 1477, 15925, 173509, 1883413, 20471269, 222402229, 2416608901, 26257155925, 285297665317, 3099884206069, 33681691385797, 365966976355477, 3976399872691813, 43205412115772725, 469446679463465221
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..950
- Index entries for linear recurrences with constant coefficients, signature (7,42).
Programs
-
Magma
I:=[1,13]; [1] cat [n le 2 select I[n] else 7*(Self(n-1) +6*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 20 2021
-
Mathematica
LinearRecurrence[{7,42}, {1,1,13}, 31] (* G. C. Greubel, Apr 20 2021 *) CoefficientList[Series[(1-6x-36x^2)/(1-7x-42x^2),{x,0,20}],x] (* Harvey P. Dale, Jan 14 2022 *)
-
Sage
def A154999_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-6*x-36*x^2)/(1-7*x-42*x^2) ).list() A154999_list(30) # G. C. Greubel, Apr 20 2021
Formula
a(n+1) = Sum_{k=0..n} A154929(n,k)*6^(n-k).
G.f.: (1 - 6*x - 36*x^2)/(1 - 7*x - 42*x^2). - G. C. Greubel, Apr 20 2021
Extensions
More terms from Philippe Deléham, Jan 27 2009
Corrected by D. S. McNeil, Aug 20 2010
Comments