A155085 a(n) = n + sum of divisors of n.
2, 5, 7, 11, 11, 18, 15, 23, 22, 28, 23, 40, 27, 38, 39, 47, 35, 57, 39, 62, 53, 58, 47, 84, 56, 68, 67, 84, 59, 102, 63, 95, 81, 88, 83, 127, 75, 98, 95, 130, 83, 138, 87, 128, 123, 118, 95, 172, 106, 143, 123, 150, 107, 174, 127, 176, 137, 148, 119, 228, 123, 158, 167, 191
Offset: 1
Keywords
Examples
a(18) = 18+1+2+3+6+9+18 = 57; 18=2*3^2; a(18) = 18+(2^2-1)*(3^3-1)/[(2-1)*(3-1)] = 57.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- David Radcliffe, in reply to Leo Hennig, Re: One entry and just one entry, SeqFan list, March 6, 2025.
Programs
-
Mathematica
Table[n+DivisorSigma[1,n],{n,70}] (* Harvey P. Dale, Apr 27 2019 *)
-
PARI
a(n) = sigma(n) + n; /* Michael Somos, Sep 19 2011 */
Formula
If n is a prime, a(n) = 2n+1.
If n is a perfect number, a(n) = 3n.
If n is of the form 2^m, a(n) = 2^(m+1) + 2^m -1.
Generally a(n) >= 2n+1.
If n = Product_{i=1...k} Pi^ki is the prime power factorization of n, then a(n) = n + [Product_{i=1...k} {Pi^(ki+1)-1}]/[Product_{i=1...k} (Pi-1)]. For example, 18 = 2*3^2; a(18) = 18+(2^2-1)*(3^3-1)/[(2-1)*(3-1)] = 57.
a(n) = A001065(-n). - Michael Somos, Sep 20 2011
G.f.: 1/(1-x)+1/(1-x)^2 - 2*x/(Q(0) - 2*x^2 + 2*x), where Q(k)= (2*x^(k+2) - x - 1)*k - 1 - 2*x + 3*x^(k+2) - x*(k+3)*(k+1)*(1-x^(k+2))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 16 2013
G.f.: x/(1 - x)^2 + Sum_{k>=1} x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 17 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = (zeta(2)+1)/2 = 1.322467... . - Amiram Eldar, Mar 17 2024
Extensions
More terms from N. J. A. Sloane, Jan 24 2009
Zero removed and offset corrected by Omar E. Pol, Jan 27 2009
Comments