cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155085 a(n) = n + sum of divisors of n.

Original entry on oeis.org

2, 5, 7, 11, 11, 18, 15, 23, 22, 28, 23, 40, 27, 38, 39, 47, 35, 57, 39, 62, 53, 58, 47, 84, 56, 68, 67, 84, 59, 102, 63, 95, 81, 88, 83, 127, 75, 98, 95, 130, 83, 138, 87, 128, 123, 118, 95, 172, 106, 143, 123, 150, 107, 174, 127, 176, 137, 148, 119, 228, 123, 158, 167, 191
Offset: 1

Views

Author

Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 19 2009

Keywords

Comments

a(n) is a perfect number for n = 5 and n = r*q with r = 4*46817 and q = 4477417228433 = (A006516(31)-sigma(r))/a(r) [Radcliffe, 2025]. Are there other n with this property? - M. F. Hasler, Mar 10 2025

Examples

			a(18) = 18+1+2+3+6+9+18 = 57; 18=2*3^2; a(18) = 18+(2^2-1)*(3^3-1)/[(2-1)*(3-1)] = 57.
		

Crossrefs

Programs

  • Mathematica
    Table[n+DivisorSigma[1,n],{n,70}] (* Harvey P. Dale, Apr 27 2019 *)
  • PARI
    a(n) = sigma(n) + n; /* Michael Somos, Sep 19 2011 */

Formula

If n is a prime, a(n) = 2n+1.
If n is a perfect number, a(n) = 3n.
If n is of the form 2^m, a(n) = 2^(m+1) + 2^m -1.
Generally a(n) >= 2n+1.
If n = Product_{i=1...k} Pi^ki is the prime power factorization of n, then a(n) = n + [Product_{i=1...k} {Pi^(ki+1)-1}]/[Product_{i=1...k} (Pi-1)]. For example, 18 = 2*3^2; a(18) = 18+(2^2-1)*(3^3-1)/[(2-1)*(3-1)] = 57.
a(n) = A000203(n) + n = A001065(n) + 2*n. - Michael Somos, Sep 19 2011
a(n) = A001065(-n). - Michael Somos, Sep 20 2011
G.f.: 1/(1-x)+1/(1-x)^2 - 2*x/(Q(0) - 2*x^2 + 2*x), where Q(k)= (2*x^(k+2) - x - 1)*k - 1 - 2*x + 3*x^(k+2) - x*(k+3)*(k+1)*(1-x^(k+2))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 16 2013
G.f.: x/(1 - x)^2 + Sum_{k>=1} x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 17 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = (zeta(2)+1)/2 = 1.322467... . - Amiram Eldar, Mar 17 2024

Extensions

More terms from N. J. A. Sloane, Jan 24 2009
Zero removed and offset corrected by Omar E. Pol, Jan 27 2009