A155156 Triangle T(n, k) = 4*n*k + 2*n + 2*k, read by rows.
8, 14, 24, 20, 34, 48, 26, 44, 62, 80, 32, 54, 76, 98, 120, 38, 64, 90, 116, 142, 168, 44, 74, 104, 134, 164, 194, 224, 50, 84, 118, 152, 186, 220, 254, 288, 56, 94, 132, 170, 208, 246, 284, 322, 360, 62, 104, 146, 188, 230, 272, 314, 356, 398, 440, 68, 114, 160, 206, 252, 298, 344, 390, 436, 482, 528
Offset: 1
Examples
Triangle begins: 8; 14, 24; 20, 34, 48; 26, 44, 62, 80; 32, 54, 76, 98, 120; 38, 64, 90, 116, 142, 168; 44, 74, 104, 134, 164, 194, 224; 50, 84, 118, 152, 186, 220, 254, 288; 56, 94, 132, 170, 208, 246, 284, 322, 360; 62, 104, 146, 188, 230, 272, 314, 356, 398, 440;
Links
- Vincenzo Librandi, Rows n = 1..100, flattened
Programs
-
Magma
[4*n*k + 2*n + 2*k : k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
-
Maple
seq(seq( 2*(2*n*k +n+k), k=1..n), n=1..15); # G. C. Greubel, Mar 20 2021
-
Mathematica
T[n_,k_]:=4*n*k +2*n +2*k; Table[T[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
-
Sage
flatten([[2*(2*n*k +n+k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 20 2021
Formula
T(n, k) = 2*A083487(n, k). - R. J. Mathar, Jan 05 2011
Extensions
Edited by Robert Hochberg, Jun 21 2010
Comments