A155161 A Fibonacci convolution triangle: Riordan array (1, x/(1 - x - x^2)). Triangle T(n,k), 0 <= k <= n, read by rows.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 3, 1, 0, 5, 10, 9, 4, 1, 0, 8, 20, 22, 14, 5, 1, 0, 13, 38, 51, 40, 20, 6, 1, 0, 21, 71, 111, 105, 65, 27, 7, 1, 0, 34, 130, 233, 256, 190, 98, 35, 8, 1, 0, 55, 235, 474, 594, 511, 315, 140, 44, 9, 1, 0, 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1
Offset: 0
Examples
Triangle begins: [0] 1; [1] 0, 1; [2] 0, 1, 1; [3] 0, 2, 2, 1; [4] 0, 3, 5, 3, 1; [5] 0, 5, 10, 9, 4, 1; [6] 0, 8, 20, 22, 14, 5, 1; [7] 0, 13, 38, 51, 40, 20, 6, 1; [8] 0, 21, 71, 111, 105, 65, 27, 7, 1; [9] 0, 34, 130, 233, 256, 190, 98, 35, 8, 1.
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
Crossrefs
Programs
-
Haskell
a155161 n k = a155161_tabl !! n !! k a155161_row n = a155161_tabl !! n a155161_tabl = [1] : [0,1] : f [0] [0,1] where f us vs = ws : f vs ws where ws = zipWith (+) (us ++ [0,0]) $ zipWith (+) ([0] ++ vs) (vs ++ [0]) -- Reinhard Zumkeller, Apr 17 2013
-
Maple
T := (n, k) -> binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4): seq(seq(simplify(T(n, k)), k = 0..n), n = 0..11); # Peter Luschny, May 23 2021 # Uses function PMatrix from A357368. PMatrix(10, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
-
Mathematica
CoefficientList[#, y]& /@ CoefficientList[(1-x-x^2)/(1-x-x^2-x*y)+O[x]^12, x] // Flatten (* Jean-François Alcover, Mar 01 2019 *) (* Generates the triangle without the leading '1' (rows are rearranged). *) (* Function RiordanSquare defined in A321620. *) RiordanSquare[x/(1 - x - x^2), 11] // Flatten (* Peter Luschny, Feb 27 2021 *)
-
Maxima
M(n,k):=pochhammer(n,k)/k!; create_list(sum(M(k,i)*binomial(i,n-i-k),i,0,n-k),n,0,8,k,0,n); /* Emanuele Munarini, Mar 15 2011 */
Formula
T(n, k) given by [0,1,1,-1,0,0,0,...] DELTA [1,0,0,0,...] where DELTA is the operator defined in A084938.
a(n,k) = Sum_{i=0..n-k} M(k,i)*binomial(i,n-i-k), where M(n,k) = n(n+1)(n+2)...(n+k-1)/k!. - Emanuele Munarini, Mar 15 2011
Recurrence: a(n+2,k+1) = a(n+1,k+1) + a(n+1,k) + a(n,k+1). - Emanuele Munarini, Mar 15 2011
G.f.: (1-x-x^2)/(1-x-x^2-x*y). - Philippe Deléham, Feb 08 2012
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000129(n) (n > 0), A052991(n), A155179(n), A155181(n), A155195(n), A155196(n), A155197(n), A155198(n), A155199(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 08 2012
T(n, k) = binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4). - Peter Luschny, May 23 2021