A155179 a(n) = 4*a(n-1)+a(n-2), n>2; a(0)=1, a(1)=3, a(2)=12.
1, 3, 12, 51, 216, 915, 3876, 16419, 69552, 294627, 1248060, 5286867, 22395528, 94868979, 401871444, 1702354755, 7211290464, 30547516611, 129401356908, 548152944243, 2322013133880, 9836205479763, 41666835052932, 176503545691491, 747681017818896, 3167227616967075
Offset: 0
Links
- Stefano Spezia, Table of n, a(n) for n = 0..1500
- Index entries for linear recurrences with constant coefficients, signature (4,1).
Crossrefs
Cf. A155161.
Programs
-
Mathematica
f[n_]:=Fibonacci[n]; lst={};Do[a=f[n]*(3/2);If[IntegerQ[a],AppendTo[lst,a]],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2009 *)
-
PARI
Vec((1-x-x^2)/((1-4*x-x^2)+O(x^99))) \\ Charles R Greathouse IV, Dec 09 2014
-
PARI
concat(1,select(n->denominator(n)==1,[fibonacci(n)*3/2|n<-[1..50]])) \\ Charles R Greathouse IV, Dec 09 2014
Formula
G.f.: (1-x-x^2)/(1-4*x-x^2).
a(n) = Sum_{k=0..n} A155161(n,k)*3^k. - Philippe Deléham, Feb 08 2012
E.g.f.: 1 + 3*exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - Stefano Spezia, Oct 06 2024
Extensions
Entries corrected by Paolo P. Lava, Jan 26 2009
Comments