A155468 Numbers that are sums of 8th powers of 2 distinct positive integers.
257, 6562, 6817, 65537, 65792, 72097, 390626, 390881, 397186, 456161, 1679617, 1679872, 1686177, 1745152, 2070241, 5764802, 5765057, 5771362, 5830337, 6155426, 7444417, 16777217, 16777472, 16783777, 16842752, 17167841, 18456832, 22542017, 43046722, 43046977, 43053282
Offset: 1
Keywords
Examples
1^8 + 2^8 = 257, 1^8 + 3^8 = 6562, 2^8 + 3^8 = 6817, ...
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
lst={};e=8;Do[Do[x=a^e;Do[y=b^e;If[x+y==n,Print[n,",",Date[]];AppendTo[lst,n]],{b,Floor[(n-x)^(1/e)],a+1,-1}],{a,Floor[n^(1/e)],1,-1}],{n,4*8!}];lst
-
PARI
list(lim)=my(v=List(),t); lim\=1; for(m=2,sqrtnint(lim-1,8), t=m^8; for(n=1,min(sqrtnint(lim-t,8),m-1), listput(v,t+n^8))); Set(v) \\ Charles R Greathouse IV, Nov 05 2017
Extensions
8 more terms. - R. J. Mathar, Sep 07 2017
More terms from Chai Wah Wu, Nov 05 2017