cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155468 Numbers that are sums of 8th powers of 2 distinct positive integers.

Original entry on oeis.org

257, 6562, 6817, 65537, 65792, 72097, 390626, 390881, 397186, 456161, 1679617, 1679872, 1686177, 1745152, 2070241, 5764802, 5765057, 5771362, 5830337, 6155426, 7444417, 16777217, 16777472, 16783777, 16842752, 17167841, 18456832, 22542017, 43046722, 43046977, 43053282
Offset: 1

Views

Author

Keywords

Examples

			1^8 + 2^8 = 257, 1^8 + 3^8 = 6562, 2^8 + 3^8 = 6817, ...
		

Crossrefs

Cf. A003380, A088719 (distinct 7th), A088677 (distinct 6th), A088703, A088687, A024670 (distinct 3rd), A004431 (distinct 2nd).

Programs

  • Mathematica
    lst={};e=8;Do[Do[x=a^e;Do[y=b^e;If[x+y==n,Print[n,",",Date[]];AppendTo[lst,n]],{b,Floor[(n-x)^(1/e)],a+1,-1}],{a,Floor[n^(1/e)],1,-1}],{n,4*8!}];lst
  • PARI
    list(lim)=my(v=List(),t); lim\=1; for(m=2,sqrtnint(lim-1,8), t=m^8; for(n=1,min(sqrtnint(lim-t,8),m-1), listput(v,t+n^8))); Set(v) \\ Charles R Greathouse IV, Nov 05 2017

Extensions

8 more terms. - R. J. Mathar, Sep 07 2017
More terms from Chai Wah Wu, Nov 05 2017