cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003380 Numbers that are the sum of 2 nonzero 8th powers.

Original entry on oeis.org

2, 257, 512, 6562, 6817, 13122, 65537, 65792, 72097, 131072, 390626, 390881, 397186, 456161, 781250, 1679617, 1679872, 1686177, 1745152, 2070241, 3359232, 5764802, 5765057, 5771362, 5830337, 6155426, 7444417, 11529602, 16777217, 16777472, 16783777, 16842752
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
274893519322337 is in the sequence as 274893519322337 = 58^8 + 59^8.
357707312890625 is in the sequence as 357707312890625 = 50^8 + 65^8.
2590188068194497 is in the sequence as 2590188068194497 = 57^8 + 84^8. (End)
		

Crossrefs

Subsequence of A004875.
Cf. A155468 (2 distinct 8th).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Maple
    A003380 := proc(nmax::integer)
        local a, x,x8,y,y8 ;
        a := {} ;
        for x from 1 do
            x8 := x^8 ;
            if 2*x8 > nmax then
                break;
            end if;
            for y from x do
                y8 := y^8 ;
                if x8+y8 > nmax then
                    break;
                end if;
                if x8+y8 <= nmax then
                    a := a  union {x8+y8} ;
                end if;
            end do:
        end do:
        sort(convert(a,list)) ;
    end proc:
    nmax := 20000000000000000 ;
    L:= A003380(nmax) ;
    LISTTOBFILE(L,"b003380.txt",1) ; # R. J. Mathar, Aug 01 2020
  • Mathematica
    Total/@Tuples[Range[8]^8,2]//Union (* Harvey P. Dale, Apr 04 2017 *)
  • PARI
    list(lim)=my(v=List(), x8); for(x=1, sqrtnint(lim\=1, 8), x8=x^8; for(y=1, min(sqrtnint(lim-x8, 8), x), listput(v, x8+y^8))); Set(v) \\ Charles R Greathouse IV, Aug 22 2017

A088719 Numbers that can be represented as a^7 + b^7, with 0 < a < b, in exactly one way.

Original entry on oeis.org

129, 2188, 2315, 16385, 16512, 18571, 78126, 78253, 80312, 94509, 279937, 280064, 282123, 296320, 358061, 823544, 823671, 825730, 839927, 901668, 1103479, 2097153, 2097280, 2099339, 2113536, 2175277, 2377088, 2920695
Offset: 1

Views

Author

Cino Hilliard, Nov 22 2003

Keywords

Comments

Conjecture: no number can be expressed as such a sum in more than one way.
No solutions to the 7.2.2 (A^7 + B^7 = C^7 + D^7), 7.2.3, 7.2.4, or 7.2.5 equations are known. The smallest 7.2.6 equation is: 125^7 + 24^7 = 121^7 + 94^7 + 83^7 + 61^7 + 57^7 + 27^7 = 476841744674549. - Jonathan Vos Post, May 04 2006

Examples

			129 = 1^7+2^7.
		

References

  • Sastry, S. and Rai, T. "On Equal Sums of Like Powers." Math. Student 16, 18-19, 1948.

Crossrefs

Cf. A003369, A155468 (8th powers).

Programs

  • Mathematica
    lst={};e=7;Do[Do[x=a^e;Do[y=b^e;If[x+y==n,AppendTo[lst,n]],{b,Floor[(n-x)^(1/e)],a+1,-1}],{a,Floor[n^(1/e)],1,-1}],{n,3*8!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 23 2009 *)
  • PARI
    powers2(m1,m2,p1) = { for(k=m1,m2, a=powers(k,p1); if(a==1,print1(k",")) ); } powers(n,p) = { z1=0; z2=0; c=0; cr = floor(n^(1/p)+1); for(x=1,cr, for(y=x+1,cr, z1=x^p+y^p; if(z1 == n,c++); ); ); return(c) }

Extensions

Edited by Don Reble, May 03 2006

A155469 Numbers that are the sum of 2 (not-distinct) numbers; nonzero square and cube, including repetitions.

Original entry on oeis.org

2, 5, 9, 10, 12, 17, 17, 24, 26, 28, 31, 33, 36, 37, 43, 44, 50, 52, 57, 63, 65, 65, 68, 72, 73, 76, 80, 82, 89, 89, 91, 100, 101, 108, 108, 113, 122, 126, 127, 128, 129, 129, 134, 141, 145, 145, 148, 150, 152, 161, 164, 170, 171, 174, 177, 185, 189, 196, 197, 204
Offset: 1

Views

Author

Keywords

Comments

5=2^2+1^3, 12=2^2+2^3, 17=3^2+2^3, 31=2^2+3^3, 43=4^2+3^3, 65=1^2+4^3, 65=8^2+1^3, 100=6^2+4^3, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[a=x^2+y^3;If[a>n,Break[]];If[a==n,AppendTo[lst,n]],{y,5!}],{x,5!}],{n,4*5!}];lst

A155470 Numbers that are the sum of 2 numbers; nonzero square and cube, including repetitions, squareNumber <> cubeNumber.

Original entry on oeis.org

5, 9, 10, 17, 17, 24, 26, 28, 31, 33, 37, 43, 44, 50, 52, 57, 63, 65, 65, 68, 72, 73, 76, 82, 89, 89, 91, 100, 101, 108, 108, 113, 122, 126, 127, 128, 129, 129, 134, 141, 145, 145, 148, 152, 161, 164, 170, 171, 174, 177, 185, 189, 196, 197, 204, 206, 208, 217, 220
Offset: 1

Views

Author

Keywords

Comments

17=3^2+2^3, 17=4^2+1^3, 31=2^2+3^3, 43=4^2+3^3, 65=1^2+4^3, 65=8^2+1^3, 100=6^2+4^3, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[If[x!=y,a=x^2+y^3;If[a>n,Break[]];If[a==n,AppendTo[lst,n]]],{y,5!}],{x,5!}],{n,4*5!}];lst

A155472 Numbers that are the sum of 2 (not-distinct) numbers; nonzero power3 and power5, including repetitions.

Original entry on oeis.org

2, 9, 28, 33, 40, 59, 65, 96, 126, 157, 217, 244, 248, 251, 270, 307, 344, 368, 375, 459, 513, 544, 586, 730, 755, 761, 972, 1001, 1025, 1032, 1032, 1051, 1088, 1149, 1240, 1243, 1332, 1363, 1367, 1536, 1574, 1729, 1753, 1760, 1971, 2024, 2198, 2229, 2355
Offset: 1

Views

Author

Keywords

Comments

40=2^3+2^5, 1032=2^3+4^5 = 1032=10^3+2^5, 1971=12^3+3^5, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[a=x^3+y^5;If[a>n,Break[]];If[a==n,AppendTo[lst,n]],{y,5!}],{x,5!}],{n,7!}];lst

A155473 Numbers of the form x^3+y^5, with x,y>0 and x<>y.

Original entry on oeis.org

9, 28, 33, 59, 65, 96, 126, 157, 217, 244, 248, 251, 307, 344, 368, 375, 459, 513, 544, 586, 730, 755, 761, 972, 1001, 1025, 1032, 1032, 1051, 1149, 1240, 1243, 1332, 1363, 1367, 1536, 1574, 1729, 1753, 1760, 1971, 2024, 2198, 2229, 2355, 2440, 2745, 2752
Offset: 1

Views

Author

Keywords

Comments

Numbers with more than one of these representations are repeated for each of them.
This concerns 1032 = 2^3+4^5 = 10^3+2^5 or 9504 = 12^3+6^5 = 21^3+3^5, for example (see A035046).

Examples

			59=3^3+2^5, 157=5^3+2^5, 513=8^3+1^5, 586=7^3+3^5, ...
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[If[x!=y,a=x^3+y^5;If[a>n,Break[]];If[a==n,AppendTo[lst,n]]],{y,5!}],{x,5!}],{n,7!}];lst

Extensions

Edited by R. J. Mathar, Mar 02 2009
Showing 1-6 of 6 results.