A155497 Triangle T(n, k) = binomial(n, k)*binomial(n+1, k+1)*binomial(2*n, 2*k)/(n-k+1), read by rows.
1, 1, 1, 1, 18, 1, 1, 90, 90, 1, 1, 280, 1400, 280, 1, 1, 675, 10500, 10500, 675, 1, 1, 1386, 51975, 161700, 51975, 1386, 1, 1, 2548, 196196, 1471470, 1471470, 196196, 2548, 1, 1, 4320, 611520, 9417408, 22702680, 9417408, 611520, 4320, 1, 1, 6885, 1652400, 46781280, 231567336, 231567336, 46781280, 1652400, 6885, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 18, 1; 1, 90, 90, 1; 1, 280, 1400, 280, 1; 1, 675, 10500, 10500, 675, 1; 1, 1386, 51975, 161700, 51975, 1386, 1; 1, 2548, 196196, 1471470, 1471470, 196196, 2548, 1; 1, 4320, 611520, 9417408, 22702680, 9417408, 611520, 4320, 1; 1, 6885, 1652400, 46781280, 231567336, 231567336, 46781280, 1652400, 6885, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[Binomial(n, k)*Binomial(n+1, k+1)*Binomial(2*n, 2*k)/(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, May 29 2021
-
Mathematica
T[n_, k_]:= Binomial[n,k]*Binomial[n+1,k+1]*Binomial[2*n,2*k]/(n-k+1); Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 29 2021 *)
-
Sage
flatten([[binomial(n, k)*binomial(n+1, k+1)*binomial(2*n, 2*k)/(n-k+1) for k in (0..12)] for n in (0..12)]) # G. C. Greubel, May 29 2021
Formula
T(n, k) = binomial(n, k)*binomial(2*n, 2*k)*f(n)/(f(k)*f(n-k)), where f(n) = (n+1)!.
T(n, k) = binomial(n, k)*binomial(n+1, k+1)*binomial(2*n, 2*k)/(n-k+1).
From G. C. Greubel, May 29 2021: (Start)
Sum_{k=0..n} T(n, k) = Hypergeometric4F3([-n, -n, -n-1, -n-1/2], [1/2, 1, 2], 1).
T(n, k) = binomial(n, k)*A155495(n, k)/(n-k+1).
T(n, k) = binomial(2*n, 2*k)*A103371(n, k)/(n-k+1). (End)
Extensions
Edited by G. C. Greubel, May 29 2021