cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155516 Triangle T(n, k) = binomial(2*n, 2*k)*binomial(2*n+1, 2*k+1)/(2*n-2*k+1), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 20, 1, 1, 105, 105, 1, 1, 336, 1764, 336, 1, 1, 825, 13860, 13860, 825, 1, 1, 1716, 70785, 226512, 70785, 1716, 1, 1, 3185, 273273, 2147145, 2147145, 273273, 3185, 1, 1, 5440, 866320, 14158144, 34763300, 14158144, 866320, 5440, 1, 1, 8721, 2372112, 71954064, 367479684, 367479684, 71954064, 2372112, 8721, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 23 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,   20,       1;
  1,  105,     105,        1;
  1,  336,    1764,      336,         1;
  1,  825,   13860,    13860,       825,         1;
  1, 1716,   70785,   226512,     70785,      1716,        1;
  1, 3185,  273273,  2147145,   2147145,    273273,     3185,       1;
  1, 5440,  866320, 14158144,  34763300,  14158144,   866320,    5440,    1;
  1, 8721, 2372112, 71954064, 367479684, 367479684, 71954064, 2372112, 8721, 1;
		

Crossrefs

Cf. A155495.

Programs

  • Magma
    [Binomial(2*n, 2*k)*Binomial(2*n+1, 2*k+1)/(2*n-2*k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, May 29 2021
    
  • Mathematica
    T[n_, k_]:= Binomial[2*n, 2*k]*Binomial[2*n+1, 2*k+1]/(2*n-2*k+1);
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 29 2021 *)
  • Sage
    flatten([[binomial(2*n, 2*k)*binomial(2*n+1, 2*k+1)/(2*n-2*k+1) for k in (0..12)] for n in (0..12)]) # G. C. Greubel, May 29 2021

Formula

T(n, k) = (2*n + 1)!!/((2*k + 1)!!*(2*(n-k) + 1)!!)*binomial(2*n, 2*k)*binomial(n, k).
From G. C. Greubel, May 29 2021: (Start)
T(n, k) = (2*n + 1)!!/((2*k + 1)!!*(2*(n-k) + 1)!!)*A155495(n, k).
T(n, k) = binomial(2*n, 2*k)*binomial(2*n+1, 2*k+1)/(2*n-2*k+1).
Sum_{k=0..n} T(n, k) = Hypergeometric4F3([-n,-n,-n-1/2,-n+1/2], [1/2,1,3/2], 1). (End)

Extensions

Edited by G. C. Greubel, May 29 2021