cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A155587 Expansion of (1 + x*c(x))/(1 - x), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 3, 5, 10, 24, 66, 198, 627, 2057, 6919, 23715, 82501, 290513, 1033413, 3707853, 13402698, 48760368, 178405158, 656043858, 2423307048, 8987427468, 33453694488, 124936258128, 467995871778, 1757900019102, 6619846420554
Offset: 0

Views

Author

Paul Barry, Jan 24 2009

Keywords

Comments

Row sums of A155586.
Hankel transform is A057079(n+2).
From Petros Hadjicostas, Aug 03 2020: (Start)
To prove R. J. Mathar's conjecture, note that the o.g.f. of the sequence implies (Sum_{n >= 0} a(n)*x^n)*(1 - x) = 1 + x*c(x); i.e., a(0) + Sum_{n >= 1} (a(n) - a(n-1))*x^n = 1 + Sum_{n >= 1} C(n-1)*x^n, where C(n) = A000108(n) (Catalan numbers).
Thus, C(n-1) = a(n) - a(n-1) (for n >= 1), and hence C(n) = a(n+1) - a(n). Since 2*(2*n - 1)*C(n-1) = (n + 1)*C(n), we get (n + 1)*a(n+1) + (-5*n + 1)*a(n) + 2*(2*n - 1)*a(n-1) = 0. The last equation implies R. J. Mathar's conjecture. (End)

Crossrefs

Partial sums of A120588.

Programs

  • Haskell
    a155587 n = a155587_list !! n
    a155587_list = scanl (+) 1 a000108_list  -- Reinhard Zumkeller, Mar 01 2013
  • Maple
    CatalanNumber := n -> binomial(2*n, n)/(n+1):
    a := n -> ((3 - I*sqrt(3)))/2 - CatalanNumber(n)*hypergeom([1, n+1/2], [n+2], 4):
    seq(simplify(a(n)), n=0..26); # Peter Luschny, Aug 04 2020

Formula

a(n) = 1 + Sum_{k=0..n-1} A000108(k).
Conjecture: n*a(n) + (6-5*n)*a(n-1) + 2*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 15 2011
a(n) = A014138(n-1) + 2 for n > 0. - Reinhard Zumkeller, Mar 01 2013 [Corrected by Petros Hadjicostas, Aug 03 2020]
a(n+1) - a(n) = A000108(n). - Petros Hadjicostas, Aug 04 2020
a(n) = ((3 - i*sqrt(3)))/2 - CatalanNumber(n)*hypergeom([1, n + 1/2], [n + 2], 4). - Peter Luschny, Aug 04 2020

A343233 Triangle read by rows: Riordan triangle T = (1 - x*c(x), x), with the generating function c of A000108 (Catalan).

Original entry on oeis.org

1, -1, 1, -1, -1, 1, -2, -1, -1, 1, -5, -2, -1, -1, 1, -14, -5, -2, -1, -1, 1, -42, -14, -5, -2, -1, -1, 1, -132, -42, -14, -5, -2, -1, -1, 1, -429, -132, -42, -14, -5, -2, -1, -1, 1, -1430, -429, -132, -42, -14, -5, -2, -1, -1, 1
Offset: 0

Views

Author

Gary W. Adamson and Wolfdieter Lang, Apr 12 2021

Keywords

Comments

As an unsigned sequence a(n) this is identical with the one of A155586(n+1), for n >= 0, but the triangle is not a simple signed version of A155586. See the formula.
This lower triangular Riordan matrix T of Toeplitz type is the inverse of the Riordan matrix (c(x), x) = |A106270|, also of Toeplitz type.

Examples

			The triangle matrix T begins:
  n/m     0    1    2   3   4   5   6   7   8   9 ...
  --------------------------------------------------
  0:      1
  1:     -1    1
  2:     -1   -1    1
  3:     -2   -1   -1   1
  4:     -5   -2   -1  -1   1
  5:    -14   -5   -2  -1  -1   1
  6:    -42  -14   -5  -2  -1  -1   1
  7:   -132  -42  -14  -5  -2  -1  -1   1
  8:   -429 -132  -42 -14  -5  -2  -1  -1   1
  9:  -1430 -429 -132 -42 -14  -5  -2  -1  -1   1
  ...
		

Crossrefs

Cf. A106270 (unsigned), A155586.

Formula

The lower triangular matrix T satisfies: T = I - L^{tr}*|A106270|, also for the finite N X N version, with the unit matrix I and the lower triangular matrix L^{tr}(i, j) = delta_{i, j-1} (Kronecker symbol delta) with first lower diagonal of 1s and 0 otherwise.
T(n, n) = 1, and for T(n, m) = -C_{n - 1 - m } = - |A106270(n-1, m)|, for 0 <= m <= n-1, with the Catalan numbers C(n) = A000108, and T(n, m) = 0 for n < m.
O.g.f. of column m: (1/c(x))*x^m = (1 - x*c(x))*x^m (Riordan matrix of Toeplitz type), with the o.g.f. c of A000108.
O.g.f. row polynomials R(n, x) = Sum_{m=0..n} T(n, m)*x^m, that is the o.g.f. of the triangle. G(z, x) = c(z)/(1 - x*z).
Showing 1-2 of 2 results.