cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155755 Triangle T(n, k) = A143491(n+2, k+2) + A143491(n+2, n-k+2), read by rows.

Original entry on oeis.org

2, 3, 3, 7, 10, 7, 25, 35, 35, 25, 121, 168, 142, 168, 121, 721, 1064, 735, 735, 1064, 721, 5041, 8055, 5399, 3330, 5399, 8055, 5041, 40321, 69299, 49371, 22449, 22449, 49371, 69299, 40321, 362881, 663740, 509830, 223300, 109298, 223300, 509830, 663740, 362881
Offset: 0

Views

Author

Roger L. Bagula, Jan 26 2009

Keywords

Comments

This symmetric summation of the triangle A143491 is equivalent to the coefficient [x^m] (p_n(x) + x^n*p_n(1/x)) of the polynomials defined in A143491 plus their reverses.

Examples

			Triangle begins as:
       2;
       3,      3;,
       7,     10,      7;
      25,     35,     35,     25;
     121,    168,    142,    168,    121;
     721,   1064,    735,    735,   1064,    721;
    5041,   8055,   5399,   3330,   5399,   8055,   5041;
   40321,  69299,  49371,  22449,  22449,  49371,  69299,  40321;
  362881, 663740, 509830, 223300, 109298, 223300, 509830, 663740, 362881;
		

Crossrefs

Cf. A143491.

Programs

  • Mathematica
    (* First program *)
    q[x_, n_]:= Product[x +n-i+1, {i,0,n-1}];
    p[x_, n_]:= q[x, n] + x^n*q[1/x, n];
    Table[CoefficientList[p[x, n], x], {n,0,12}]//Flatten (* modified by G. C. Greubel, Jun 06 2021 *)
    (* Second program *)
    A143491[n_, k_]:= (n-2)!*Sum[(n-k-j+1)*Abs[StirlingS1[j+k-2, k-2]]/(j+k-2)!, {j,0,n-k}];
    A155755[n_, k_]:= A143491[n+2, k+2] + A143491[n+2, n-k+2];
    Table[A155755[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 06 2021 *)
  • Sage
    def A143491(n,k): return factorial(n-2)*sum( (n-k-j+1)*stirling_number1(j+k-2, k-2)/factorial(j+k-2) for j in (0..n-k) )
    def A155755(n,k): return A143491(n+2, k+2) + A143491(n+2, n-k+2)
    flatten([[A155755(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 06 2021

Formula

T(n, k) = A143491(n+2, k+2) + A143491(n+2, n-k+2).
Sum_{k=0..n} T(n, k) = (n+2)!.