A155864 Triangle T(n,k) = n*(n-1)*binomial(n-2, k-1) for 1 <= k <= n-1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, read by rows.
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 12, 24, 12, 1, 1, 20, 60, 60, 20, 1, 1, 30, 120, 180, 120, 30, 1, 1, 42, 210, 420, 420, 210, 42, 1, 1, 56, 336, 840, 1120, 840, 336, 56, 1, 1, 72, 504, 1512, 2520, 2520, 1512, 504, 72, 1, 1, 90, 720, 2520, 5040, 6300, 5040, 2520, 720, 90, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 6, 6, 1; 1, 12, 24, 12, 1; 1, 20, 60, 60, 20, 1; 1, 30, 120, 180, 120, 30, 1; 1, 42, 210, 420, 420, 210, 42, 1; 1, 56, 336, 840, 1120, 840, 336, 56, 1; 1, 72, 504, 1512, 2520, 2520, 1512, 504, 72, 1; 1, 90, 720, 2520, 5040, 6300, 5040, 2520, 720, 90, 1; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A155864:= func< n,k | k eq 0 or k eq n select 1 else n*(n-1)*Binomial(n-2, k-1) >; [A155864(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
-
Mathematica
(* First program *) p[n_, x_]:= p[n,x]= If[n==0, 1, 1 + x^n + x*D[(x+1)^(n), {x, 2}]]; Flatten[Table[CoefficientList[p[n,x], x], {n, 0, 12}]] (* Second program *) Table[If[k==0 || k==n, 1, 2*Binomial[n, 2]*Binomial[n-2, k-1]], {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, Jun 04 2021 *)
-
Maxima
T(n, k) := ratcoef(x^n + n*(n-1)*x*(x+1)^(n-2) + (1 + (-1)^(2^n))/2, x, k)$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 04 2018 */
-
Sage
def A155864(n,k): return 1 if (k==0 or k==n) else n*(n-1)*binomial(n-2,k-1) flatten([[A155864(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021
Formula
T(n, k) = coefficients of p(n, x), where p(n, x) = 1 + x^n + x*((d/dx)^2 (1+x)^n), with T(0, 0) = 1.
From Franck Maminirina Ramaharo, Dec 04 2018: (Start)
T(n, k) = n*(n-1)*binomial(n-2, k-1) with T(n, 0) = T(n, n) = 1.
n-th row polynomial is x^n + n*(n - 1)*x*(x + 1)^(n - 2) + (1 + (-1)^(2^n))/2.
G.f.: 1/(1 - y) + 1/(1 - x*y) + 2*x*y^2/(1 - y - x*y)^3 - 1.
E.g.f.: exp(y) + exp(x*y) + x*y^2*exp(y + x*y) - 1. (End)
Sum_{k=0..n} T(n, k) = 2 - [n=0] + A001815(n). - G. C. Greubel, Jun 04 2021
Extensions
Edited and name clarified by Franck Maminirina Ramaharo, Dec 04 2018