cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155871 Subtraction of polynomial coefficients of MacMahon A060187 from third derivative of Pascal's triangle A155863: p(x,n)=(If[n == 0, 1, x^n + 1 + x*D[( x + 1)^(n + 1), {x, 3}]] - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x.

Original entry on oeis.org

1, 1, -16, -110, -16, -117, -1322, -1322, -117, -512, -9703, -22288, -9703, -512, -1843, -58977, -256363, -256363, -58977, -1843, -6048, -328588, -2477728, -4664934, -2477728, -328588, -6048, -18953, -1751300, -21692852, -69388094
Offset: 3

Views

Author

Roger L. Bagula, Jan 29 2009

Keywords

Comments

Row sums are:
{2, -142, -2878, -42718, -634366, -10289662, -185702398, -3715637758,
-81748930558, -1961988796414, -51011749920766}

Examples

			{1, 1},
{-16, -110, -16},
{-117, -1322, -1322, -117},
{-512, -9703, -22288, -9703, -512},
{-1843, -58977, -256363, -256363, -58977, -1843},
{-6048, -328588, -2477728, -4664934, -2477728, -328588, -6048},
{-18953, -1751300, -21692852, -69388094, -69388094, -21692852, -1751300, -18953},
{-58048, -9108221, -178273184, -906867842, -1527023168, -906867842, -178273184, -9108221, -58048},
{-175815, -46690547, -1403033205, -10836712218, -28587853494, -28587853494, -10836712218, -1403033205, -46690547, -175815},
{-529712, -237214810, -10708833968, -121383574287, -477020204064, -743288082732, -477020204064, -121383574287, -10708833968, -237214810, -529712},
{-1592125, -1198358670, -79944129566, -1295922974075, -7310749751463, -16818058154484, -16818058154484, -7310749751463, -1295922974075, -79944129566, -1198358670, -1592125}
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_] = (If[n == 0, 1, x^n + 1 + x*D[(x + 1)^(n + 1), {x, 3}]] - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x;
    Table[FullSimplify[ExpandAll[p[x, n]]], {n, 3, 13}];
    a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 3, 13}];
    Flatten[a]

Formula

p(x,n)=(If[n == 0, 1, x^n + 1 + x*D[( x + 1)^(n + 1), {x, 3}]]
- 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x;
t(n,m)=coefficients(p(x,n))