A155966 a(n) = 2*n^2 + 8.
8, 10, 16, 26, 40, 58, 80, 106, 136, 170, 208, 250, 296, 346, 400, 458, 520, 586, 656, 730, 808, 890, 976, 1066, 1160, 1258, 1360, 1466, 1576, 1690, 1808, 1930, 2056, 2186, 2320, 2458, 2600, 2746, 2896, 3050, 3208, 3370, 3536, 3706, 3880, 4058, 4240, 4426, 4616
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[2*n^2+8: n in [0..50]]; // Vincenzo Librandi, Feb 22 2012
-
Mathematica
LinearRecurrence[{3, -3, 1}, {8, 10, 16}, 50] (* Vincenzo Librandi, Feb 22 2012 *) 2*Range[0,50]^2+8 (* Harvey P. Dale, Mar 01 2018 *)
-
PARI
a(n)=2*n^2+8 \\ Charles R Greathouse IV, Jan 11 2012
Formula
G.f.: 2*(4 - 7*x + 5*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A087475(n). - Bruno Berselli, Mar 13 2015
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=0} 1/a(n) = 1/16 + coth(2*Pi)*Pi/8.
Sum_{n>=0} (-1)^n/a(n) = 1/16 + cosech(2*Pi)*Pi/8. (End)
E.g.f.: 2*exp(x)*(4 + x + x^2). - Elmo R. Oliveira, Jan 17 2025
Extensions
Offset changed from 1 to 0 and added a(0)=8 by Bruno Berselli, Mar 13 2015
Comments