cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155966 a(n) = 2*n^2 + 8.

Original entry on oeis.org

8, 10, 16, 26, 40, 58, 80, 106, 136, 170, 208, 250, 296, 346, 400, 458, 520, 586, 656, 730, 808, 890, 976, 1066, 1160, 1258, 1360, 1466, 1576, 1690, 1808, 1930, 2056, 2186, 2320, 2458, 2600, 2746, 2896, 3050, 3208, 3370, 3536, 3706, 3880, 4058, 4240, 4426, 4616
Offset: 0

Views

Author

Vincenzo Librandi, Jan 31 2009

Keywords

Comments

The identity (n^3 + 4*n)^2 + (2*n^2 + 8)^2 = (n^2 + 4)^3 can be written as A155965(n)^2 + a(n)^2 = A087475(n)^3.

Crossrefs

Cf. similar sequences listed in A255843.

Programs

Formula

G.f.: 2*(4 - 7*x + 5*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A087475(n). - Bruno Berselli, Mar 13 2015
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=0} 1/a(n) = 1/16 + coth(2*Pi)*Pi/8.
Sum_{n>=0} (-1)^n/a(n) = 1/16 + cosech(2*Pi)*Pi/8. (End)
E.g.f.: 2*exp(x)*(4 + x + x^2). - Elmo R. Oliveira, Jan 17 2025

Extensions

Offset changed from 1 to 0 and added a(0)=8 by Bruno Berselli, Mar 13 2015