cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A156618 Denominators of Egyptian fraction for Pi-3 whose partial sums are the convergents.

Original entry on oeis.org

7, -742, 11978, -3740526, 1099482930, -2202719155, 6600663644, -26413901692, 96840976853, -496325469560, 2346251883960, -44006595799206, 1345586183756654, -4127747481719463, 10251870941174304
Offset: 0

Views

Author

Jaume Oliver Lafont, Feb 11 2009

Keywords

Comments

Numerators are all 1.

Examples

			3+1/a(0)=22/7
3+1/a(0)+1/a(1)=333/106
3+1/a(0)+1/a(1)+1/a(2)=355/113
		

Crossrefs

Programs

  • PARI
    c0=3; for (k=2,30,m=contfracpnqn(contfrac(Pi,k));c1=m[1,1]/m[2,1];print1(1/(c1-c0),", ");c0=c1;)

A156019 Numerators in an infinite sum for Pi.

Original entry on oeis.org

3, 15, 73, 1, 2, 3, 7, 1, 2, 2, 1, 2, 1, 3, 1, 2, 6, 1, 1, 3, 1, 6, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 2, 6, 1, 2, 3, 1, 1, 1, 45, 22, 2, 1, 1, 24, 2, 1, 2, 1, 2, 4, 2, 8, 5, 1, 1, 1, 2, 7, 1, 3, 1, 7, 4, 7, 3, 3, 9, 9, 1, 18, 3, 15, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

For k >= 0, define Q(k) = A002485(2k)/A002486(2k) (convergents to Pi that are less than Pi), so Pi = Sum_{k>=1} (Q(k) - Q(k-1)). Then a(n) is the numerator of Q(n) - Q(n-1).

Examples

			a(2) = 15 since A002485(4)/A002486(4) = 333/106, A002485(2)/A002486(2) = 3/1, and 333/106 - 3/1 = 15/106 (see table below).
Pi = 3/1 + 15/106 + 73/877203 + 1/2195225334 + 2/17599271777 + 3/360950005720 + 7/17348726394920 + ....
.
  n  Q(n) = A002485(2n)/A002486(2n)  Q(n) - Q(n-1)  a(n)
  -  ------------------------------  -------------  ----
  0       0/1     = 0                     -           -
  1       3/1     = 3                    3/1          3
  2     333/106   = 3.1415094339...     15/106       15
  3  103993/33102 = 3.1415926530...     73/877203    73
		

Crossrefs

Cf. A000796, A002485, A002486, A156020 (denominators).

Formula

a(n) = numerator(A002485(2n)/A002486(2n) - A002485(2n-2)/A002486(2n-2)).

Extensions

More terms from Alexander R. Povolotsky, Sep 01 2009
Edited by Jon E. Schoenfield, Jan 04 2022
More terms from Jinyuan Wang, Jun 29 2022

A157497 Triangle read by rows, A156348 * A127648.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 4, 0, 4, 1, 0, 0, 0, 5, 1, 6, 9, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7, 1, 8, 0, 16, 0, 0, 0, 8, 1, 0, 18, 0, 0, 0, 0, 0, 9, 1, 10, 0, 0, 25, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 12, 30, 40, 0, 36, 0, 0, 0, 0, 0, 12
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Mar 01 2009

Keywords

Comments

Row sums = A157020: (1, 3, 4, 9, 6, 22, 8,...)

Examples

			First few rows of the triangle =
1;
1, 2;
1, 0, 3;
1, 4, 0, 4;
1, 0, 0, 0, 5;
1, 6, 9, 0, 0, 6;
1, 0, 0, 0, 0, 0, 7;
1, 8, 0, 16, 0, 0, 0, 8;
1, 0, 18, 0, 0, 0, 0, 0, 9;
1, 10, 0, 0, 25, 0, 0, 0, 0, 10;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11;
1, 12, 30, 40, 0, 36, 0, 0, 0, 0, 0, 12;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13;
1, 14, 0, 0, 0, 0, 49, 0, 0, 0, 0, 0, 0, 14;
...
Row 4 = (1, 4, 0, 4) = termwise products of (1, 2, 0, 1) and (1, 2, 3, 4)
where (1, 2, 0, 1) = row 4 of triangle A156348.
		

Crossrefs

Formula

Triangle read by rows, A156348 * A127648. A127648 = an infinite lower triangular matrix with (1, 2, 3,...) as the main diagonal and the rest zeros.
Showing 1-3 of 3 results.