A156061 a(n) = product of indices of distinct prime factors of n, where index(prime(k)) = k.
1, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 6, 1, 7, 2, 8, 3, 8, 5, 9, 2, 3, 6, 2, 4, 10, 6, 11, 1, 10, 7, 12, 2, 12, 8, 12, 3, 13, 8, 14, 5, 6, 9, 15, 2, 4, 3, 14, 6, 16, 2, 15, 4, 16, 10, 17, 6, 18, 11, 8, 1, 18, 10, 19, 7, 18, 12, 20, 2, 21, 12, 6, 8, 20, 12, 22, 3, 2, 13, 23, 8, 21, 14, 20, 5, 24, 6, 24, 9, 22, 15, 24, 2, 25, 4, 10, 3
Offset: 1
Examples
Here primepi (A000720) gives the index of its prime argument: n = 14 = 2 * 7, thus a(14) = primepi(2)*primepi(7) = 1*4 = 4. n = 21 = 3 * 7, thus a(21) = primepi(3)*primepi(7) = 2*4 = 8. n = 168 = 2^3 * 3 * 7, thus a(168)= primepi(2)*primepi(3)*primepi(7) = 1*2*4 = 8.
Links
Crossrefs
Programs
-
Maple
with(numtheory): a := proc(n) options operator, arrow: product(pi(factorset(n)[j]), j = 1 .. nops(factorset(n))) end proc: seq(a(n), n = 1 .. 100); # Emeric Deutsch, Jun 03 2015
-
Mathematica
Table[Apply[Times, PrimePi@ FactorInteger[n][[All, 1]]] + Boole[n == 1], {n, 100}] (* Michael De Vlieger, Aug 14 2017 *)
-
PARI
a(n) = {my(f=factor(n)); for (k=1, #f~, f[k,1] = primepi(f[k,1]); f[k,2] = 1); factorback(f);} \\ Michel Marcus, Aug 14 2017
-
Scheme
(define (A156061 n) (if (= 1 n) 1 (* (A055396 n) (A156061 (A028234 n))))) ;; Antti Karttunen, Aug 13 2017
Formula
Extensions
a(1) = 1 prepended by Antti Karttunen, Aug 13 2017
Comments