A156066 Numbers n with property that n^2 is a square arising in A154138.
2, 3, 9, 16, 52, 93, 303, 542, 1766, 3159, 10293, 18412, 59992, 107313, 349659, 625466, 2037962, 3645483, 11878113, 21247432, 69230716, 123839109, 403506183, 721787222, 2351806382, 4206884223, 13707332109, 24519518116, 79892186272
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Crossrefs
Cf. A154138.
Programs
-
GAP
a:=[2,3,9,16];; for n in [5..30] do a[n]:=6*a[n-2]-a[n-4]; od; a; # Muniru A Asiru, Sep 28 2018
-
Magma
I:=[2,3,9,16]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 11 2014
-
Maple
seq(coeff(series(-x*(x-1)*(x+2)*(2*x+1)/((x^2-2*x-1)*(x^2+2*x-1)),x,n+1), x, n), n = 1..30); # Muniru A Asiru, Sep 28 2018
-
Mathematica
a[1]=2;a[2]=3;a[3]=9;a[4]=16;a[n_]:=a[n]=6*a[n-2]-a[n-4];A1=Table[a[n],{n,25}] CoefficientList[Series[-(x - 1) (x + 2) (2 x + 1)/((x^2 - 2 x - 1) (x^2 + 2 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 11 2014 *)
-
PARI
Vec(-x*(x-1)*(x+2)*(2*x+1)/((x^2-2*x-1)*(x^2+2*x-1)) + O(x^100)) \\ Colin Barker, Feb 08 2014
Formula
a(1..4) = (2,3,9,16); a(n>4) = 6*a(n-2) - a(n-4).
G.f.: -x*(x-1)*(x+2)*(2*x+1) / ((x^2-2*x-1)*(x^2+2*x-1)). - Colin Barker, Feb 08 2014
Comments