cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A250656 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.

Original entry on oeis.org

9, 16, 19, 25, 34, 39, 36, 53, 70, 79, 49, 76, 109, 142, 159, 64, 103, 156, 221, 286, 319, 81, 134, 211, 316, 445, 574, 639, 100, 169, 274, 427, 636, 893, 1150, 1279, 121, 208, 345, 554, 859, 1276, 1789, 2302, 2559, 144, 251, 424, 697, 1114, 1723, 2556, 3581
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Table starts
....9...16....25....36....49....64....81...100...121...144...169....196....225
...19...34....53....76...103...134...169...208...251...298...349....404....463
...39...70...109...156...211...274...345...424...511...606...709....820....939
...79..142...221...316...427...554...697...856..1031..1222..1429...1652...1891
..159..286...445...636...859..1114..1401..1720..2071..2454..2869...3316...3795
..319..574...893..1276..1723..2234..2809..3448..4151..4918..5749...6644...7603
..639.1150..1789..2556..3451..4474..5625..6904..8311..9846.11509..13300..15219
.1279.2302..3581..5116..6907..8954.11257.13816.16631.19702.23029..26612..30451
.2559.4606..7165.10236.13819.17914.22521.27640.33271.39414.46069..53236..60915
.5119.9214.14333.20476.27643.35834.45049.55288.66551.78838.92149.106484.121843

Examples

			Some solutions for n=4 k=4
..1..1..0..1..1....0..0..0..0..0....0..0..0..0..0....1..1..1..0..0
..0..0..0..1..1....1..1..1..1..1....1..1..1..1..1....0..0..0..0..0
..0..0..0..1..1....1..1..1..1..1....0..0..0..0..0....0..0..0..0..0
..0..0..0..1..1....0..0..0..0..0....1..1..1..1..1....1..1..1..1..1
..0..0..0..1..1....0..1..1..1..1....1..1..1..1..1....0..0..0..1..1
		

Crossrefs

Column 1 is A052549(n+1)
Column 2 is A176449
Column 3 is A156127(n+1)
Column 4 is A048487(n+2)
Row 1 is A000290(n+2)
Row 2 is A168244(n+3)

Formula

Empirical: T(n,k) = 2^(n-1)*k^2 + (5*2^(n-1)-1)*k + 2^(n+1)
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1) +(5*2^(n-1) -1) +2^(n+1)
k=2: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*4 +(5*2^(n-1) -1)*2 +2^(n+1)
k=3: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*9 +(5*2^(n-1) -1)*3 +2^(n+1)
k=4: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*16 +(5*2^(n-1) -1)*4 +2^(n+1)
k=5: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*25 +(5*2^(n-1) -1)*5 +2^(n+1)
k=6: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*36 +(5*2^(n-1) -1)*6 +2^(n+1)
k=7: a(n) = 3*a(n-1) -2*a(n-2); also a(n) = 2^(n-1)*49 +(5*2^(n-1) -1)*7 +2^(n+1)
Empirical for row n:
n=1: a(n) = 1*n^2 + 4*n + 4
n=2: a(n) = 2*n^2 + 9*n + 8
n=3: a(n) = 4*n^2 + 19*n + 16
n=4: a(n) = 8*n^2 + 39*n + 32
n=5: a(n) = 16*n^2 + 79*n + 64
n=6: a(n) = 32*n^2 + 159*n + 128
n=7: a(n) = 64*n^2 + 319*n + 256

A225582 Primes in the chain of repeated application of x->2*x+3, starting at x=11.

Original entry on oeis.org

11, 53, 109, 1789, 3581, 28669, 229373, 3670013, 58720253, 117440509, 60129542141, 264452523040700131966973, 34662321099990647697175478269, 2381976568446569244243622252022377480189, 4878288012178573812210938372141829079433213
Offset: 1

Views

Author

Vincenzo Librandi, May 14 2013

Keywords

Comments

Primes in A156127.

Crossrefs

Primes of the form k*2^m-3: A050415 (k=1), A173769 (k=5), this sequence (k=7), A225583 (k=11), A225584 (k=13); A172156 (k=100), A163589 (k=715).
Numbers of the form 7*2^m-3: A156127.

Programs

  • Magma
    x:=11; a:=[n eq 1 select x else 2*Self(n-1)+3: n in [1..200]]; [a[i]: i in [1..#a] | IsPrime(a[i])];
    
  • Magma
    [a: n in [0..150] | IsPrime(a) where a is 7*2^n-3];
  • Mathematica
    Select[NestList[2 # + 3 &, 11, 30], PrimeQ] (* or *) Select[Table[7 2^n - 3, {n, 0, 150}], PrimeQ]

A127703 Primes of the form 7*2^k-3 or 7*2^k+3.

Original entry on oeis.org

11, 17, 31, 53, 59, 109, 227, 1789, 3581, 28669, 57347, 114691, 229373, 3670013, 14680067, 58720253, 117440509, 7516192771, 60129542141, 7881299347898371, 264452523040700131966973, 34662321099990647697175478269
Offset: 1

Views

Author

J. M. Bergot, Sep 27 2011

Keywords

Comments

This sequence lists the primes produced by the sum of three consecutive powers of 2 minus 3 or plus 3, 2^k+2^(k+1)+2^(k+2)+-3, generated by k = 1, 1, 2, 3, 3, 4, 5, 8, 9, 12, 13, 14, 15, 19, 21, 23, 24, 30, 33...
In 76 trials from k=0 to 37, 19 primes, 34 semiprimes, and 23 numbers requiring more than two different prime factors were produced. This differs from the distribution of such numbers. Starting at k=16 the final digits of the sum are the powers of 2 from 1 to 13.

Examples

			2^5 + 2^6 + 2^7=224, then 224-3=221=semiprime 13*17 (not contributing to the sequence) or 224+3=prime 227, an entry in the sequence.
		

Crossrefs

Programs

  • Mathematica
    lim = 100; Union[Select[7*2^Range[lim] - 3, PrimeQ], Select[7*2^Range[lim] + 3, PrimeQ]] (* T. D. Noe, Sep 27 2011 *)

Extensions

Entries corrected by R. J. Mathar, Sep 27 2011
Showing 1-3 of 3 results.